December 22, 2020
Cluster analysis aims at partitioning data into groups or clusters. In applications, it is common to deal with problems where the number of clusters is unknown. Bayesian mixture models employed in such applications usually specify a flexible prior that takes into account the uncertainty with respect to the number of clusters. However, a major empirical challenge involving the use of these models is in the characterisation of the induced prior on the partitions. This work intr...
April 22, 2019
Mixture models are one of the most widely used statistical tools when dealing with data from heterogeneous populations. This paper considers the long-standing debate over finite mixture and infinite mixtures and brings the two modelling strategies together, by showing that a finite mixture is simply a realization of a point process. Following a Bayesian nonparametric perspective, we introduce a new class of prior: the Normalized Independent Point Processes. We investigate the...
November 29, 2013
Discrete mixture models are one of the most successful approaches for density estimation. Under a Bayesian nonparametric framework, Dirichlet process location-scale mixture of Gaussian kernels is the golden standard, both having nice theoretical properties and computational tractability. In this paper we explore the use of the skew-normal kernel, which can naturally accommodate several degrees of skewness by the use of a third parameter. The choice of this kernel function all...
April 19, 2022
In the realm of unsupervised learning, Bayesian nonparametric mixture models, exemplified by the Dirichlet Process Mixture Model (DPMM), provide a principled approach for adapting the complexity of the model to the data. Such models are particularly useful in clustering tasks where the number of clusters is unknown. Despite their potential and mathematical elegance, however, DPMMs have yet to become a mainstream tool widely adopted by practitioners. This is arguably due to a ...
March 30, 2023
Clustering is an important task in many areas of knowledge: medicine and epidemiology, genomics, environmental science, economics, visual sciences, among others. Methodologies to perform inference on the number of clusters have often been proved to be inconsistent, and introducing a dependence structure among the clusters implies additional difficulties in the estimation process. In a Bayesian setting, clustering is performed by considering the unknown partition as a random o...
February 10, 2013
In recent work, robust mixture modelling approaches using skewed distributions have been explored to accommodate asymmetric data. We introduce parsimony by developing skew-t and skew-normal analogues of the popular GPCM family that employ an eigenvalue decomposition of a positive-semidefinite matrix. The methods developed in this paper are compared to existing models in both an unsupervised and semi-supervised classification framework. Parameter estimation is carried out usin...
October 5, 2018
We use statistical mechanics to study model-based Bayesian data clustering. In this approach, each partition of the data into clusters is regarded as a microscopic system state, the negative data log-likelihood gives the energy of each state, and the data set realisation acts as disorder. Optimal clustering corresponds to the ground state of the system, and is hence obtained from the free energy via a low `temperature' limit. We assume that for large sample sizes the free ene...
July 6, 2012
A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the general inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification appl...
February 28, 2015
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman-Yor process priors, select discrete probability distributions almost surely and, therefore, automatically induce exchangeable random partitions. Here we focus on the family of Gibbs-type priors, a recent and eleg...
June 25, 2013
The expectation-maximization (EM) algorithm is an iterative method for finding maximum likelihood estimates when data are incomplete or are treated as being incomplete. The EM algorithm and its variants are commonly used for parameter estimation in applications of mixture models for clustering and classification. This despite the fact that even the Gaussian mixture model likelihood surface contains many local maxima and is singularity riddled. Previous work has focused on cir...