June 19, 2023
Transformer-based language models have achieved remarkable success in few-shot in-context learning and drawn a lot of research interest. However, these models' performance greatly depends on the choice of the example prompts and also has high variability depending on how samples are chosen. In this paper, we conduct a comprehensive study of retrieving semantically similar few-shot samples and using them as the context, as it helps the model decide the correct label without any gradient update in the multilingual and cross-lingual settings. We evaluate the proposed method on five natural language understanding datasets related to intent detection, question classification, sentiment analysis, and topic classification. The proposed method consistently outperforms random sampling in monolingual and cross-lingual tasks in non-English languages.
Similar papers 1
December 31, 2020
Few-shot crosslingual transfer has been shown to outperform its zero-shot counterpart with pretrained encoders like multilingual BERT. Despite its growing popularity, little to no attention has been paid to standardizing and analyzing the design of few-shot experiments. In this work, we highlight a fundamental risk posed by this shortcoming, illustrating that the model exhibits a high degree of sensitivity to the selection of few shots. We conduct a large-scale experimental s...
November 11, 2023
The remarkable ability of Large Language Models (LLMs) to understand and follow instructions has sometimes been limited by their in-context learning (ICL) performance in low-resource languages. To address this, we introduce a novel approach that leverages cross-lingual retrieval-augmented in-context learning (CREA-ICL). By extracting semantically similar prompts from high-resource languages, we aim to improve the zero-shot performance of multilingual pre-trained language mode...
September 16, 2021
General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre...
December 19, 2022
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstrea...
September 6, 2021
Even though large pre-trained multilingual models (e.g. mBERT, XLM-R) have led to significant performance gains on a wide range of cross-lingual NLP tasks, success on many downstream tasks still relies on the availability of sufficient annotated data. Traditional fine-tuning of pre-trained models using only a few target samples can cause over-fitting. This can be quite limiting as most languages in the world are under-resourced. In this work, we investigate cross-lingual adap...
May 8, 2024
Recent studies have shown that leveraging off-the-shelf or fine-tuned retrievers, capable of retrieving high-quality in-context examples, significantly improves in-context learning of English. However, adapting these methods to other languages, especially low-resource ones, presents challenges due to the scarcity of available cross-lingual retrievers and annotated data. In this paper, we introduce XAMPLER: Cross-Lingual Example Retrieval, a method tailored to tackle the chall...
June 11, 2024
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate th...
November 1, 2023
The promise of Large Language Models (LLMs) in Natural Language Processing has often been overshadowed by their limited performance in low-resource languages such as Bangla. To address this, our paper presents a pioneering approach that utilizes cross-lingual retrieval augmented in-context learning. By strategically sourcing semantically similar prompts from high-resource language, we enable multilingual pretrained language models (MPLMs), especially the generative model BLOO...
June 13, 2023
Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typology from source languages or when pre-training data is limited in size. In this paper, we propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our XLM-P enables (1) lightweight modeling of language-invariant and language-spec...
January 21, 2024
Language models, especially pre-trained large language models, have showcased remarkable abilities as few-shot in-context learners (ICL), adept at adapting to new tasks with just a few demonstrations in the input context. However, the model's ability to perform ICL is sensitive to the choice of the few-shot demonstrations. Instead of using a fixed set of demonstrations, one recent development is to retrieve demonstrations tailored to each input query. The implementation of de...