June 19, 2023
Similar papers 4
April 5, 2022
Dense retrieval models using a transformer-based bi-encoder design have emerged as an active area of research. In this work, we focus on the task of monolingual retrieval in a variety of typologically diverse languages using one such design. Although recent work with multilingual transformers demonstrates that they exhibit strong cross-lingual generalization capabilities, there remain many open research questions, which we tackle here. Our study is organized as a "best practi...
October 30, 2018
A significant roadblock in multilingual neural language modeling is the lack of labeled non-English data. One potential method for overcoming this issue is learning cross-lingual text representations that can be used to transfer the performance from training on English tasks to non-English tasks, despite little to no task-specific non-English data. In this paper, we explore a natural setup for learning cross-lingual sentence representations: the dual-encoder. We provide a com...
July 2, 2024
Cross-lingual knowledge transfer, especially between high- and low-resource languages, remains a challenge in natural language processing (NLP). This study offers insights for improving cross-lingual NLP applications through the combination of parameter-efficient fine-tuning methods. We systematically explore strategies for enhancing this cross-lingual transfer through the incorporation of language-specific and task-specific adapters and soft prompts. We present a detailed in...
January 27, 2021
The great majority of languages in the world are considered under-resourced for the successful application of deep learning methods. In this work, we propose a meta-learning approach to document classification in limited-resource setting and demonstrate its effectiveness in two different settings: few-shot, cross-lingual adaptation to previously unseen languages; and multilingual joint training when limited target-language data is available during training. We conduct a syste...
July 1, 2021
Multilingual Language Models (\MLLMs) such as mBERT, XLM, XLM-R, \textit{etc.} have emerged as a viable option for bringing the power of pretraining to a large number of languages. Given their success in zero-shot transfer learning, there has emerged a large body of work in (i) building bigger \MLLMs~covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating \MLLMs~ (iii) analysing the performance of...
December 21, 2021
In this work we present a systematic empirical study focused on the suitability of the state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks across a number of diverse language pairs. We first treat these models as multilingual text encoders and benchmark their performance in unsupervised ad-hoc sentence- and document-level CLIR. In contrast to supervised language understanding, our results indicate that for unsupervised document-level...
February 3, 2024
Recent advances in training multilingual language models on large datasets seem to have shown promising results in knowledge transfer across languages and achieve high performance on downstream tasks. However, we question to what extent the current evaluation benchmarks and setups accurately measure zero-shot cross-lingual knowledge transfer. In this work, we challenge the assumption that high zero-shot performance on target tasks reflects high cross-lingual ability by introd...
July 15, 2024
Large language models (LLMs) are very proficient text generators. We leverage this capability of LLMs to generate task-specific data via zero-shot prompting and promote cross-lingual transfer for low-resource target languages. Given task-specific data in a source language and a teacher model trained on this data, we propose using this teacher to label LLM generations and employ a set of simple data selection strategies that use the teacher's label probabilities. Our data sele...
May 12, 2022
Massively Multilingual Transformer based Language Models have been observed to be surprisingly effective on zero-shot transfer across languages, though the performance varies from language to language depending on the pivot language(s) used for fine-tuning. In this work, we build upon some of the existing techniques for predicting the zero-shot performance on a task, by modeling it as a multi-task learning problem. We jointly train predictive models for different tasks which ...
January 11, 2024
Large pretrained multilingual language models (ML-LMs) have shown remarkable capabilities of zero-shot cross-lingual transfer, without direct cross-lingual supervision. While these results are promising, follow-up works found that, within the multilingual embedding spaces, there exists strong language identity information which hinders the expression of linguistic factors shared across languages. For semantic tasks like cross-lingual sentence retrieval, it is desired to remov...