July 14, 2023
Similar papers 4
June 9, 2017
Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a point-like mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results a...
December 2, 2021
Obtaining black hole solutions in alternative theories of gravity can be a difficult task due to cumbersome field equations that arise in many of such theories. In order to study the strong field regime in a model-free approach, one can consider deformed black hole solutions with additional parameters beyond mass, charge and angular momentum. We investigate the scattering and absorption of a massless scalar field by non-Schwarzschild black holes, considering the Johannsen and...
January 29, 2021
Recent developments in the gravitational waves interferometry require more pertinent theoretical models of gravitational waves generation and propagation. Untouched possible mechanisms of spin-2 spacetime perturbations production, we will consider their subsequent scattering on other black holes (BHs). Specifically, we consider a generalization of the Regge-Wheeler-Zerilli equations for the case of distorted BHs (BHs surrounded with matter) in Minkowski and Anti-de Sitter spa...
May 28, 2024
The ringdown gravitational wave signal arising e.g., in the final stage of a black hole binary merger, contains important information about the properties of the remnant, and can potentially be used to perform clean tests of general relativity. However, interpreting the ringdown signal, in particular when it is the loudest, requires understanding the role of nonlinearities and their potential impact on modelling this phase using quasinormal modes. Here, we focus on a particul...
August 25, 2011
We reexamine some aspects of scattering by a Schwarzschild black hole in the framework of complex angular momentum techniques. More precisely, we consider, for massive scalar perturbations, the high-energy behavior of the resonance spectrum and of the absorption cross section by emphasizing analytically the role of the mass. This is achieved (i) by deriving asymptotic expansions for the Regge poles of the $S$-matrix and then for the associated weakly damped quasinormal freque...
July 3, 2014
Based on recent ideas, we propose a framework for the description of black holes in terms of constituent graviton degrees of freedom. Within this formalism a large black hole can be understood as a bound state of N longitudinal gravitons. In this context black holes are similar to baryonic bound states in quantum chromodynamics which are described by fundamental quark degrees of freedom. As a quantitative tool we employ a quantum bound state description originally developed i...
September 6, 1996
In this paper we compute the low energy absorption cross-section for minimally coupled massles scalars and spin-$1/2$ particles, into a general spherically symmetric black hole in arbitrary dimensions. The scalars have a cross section equal to the area of the black hole, while the spin-$1/2$ particles give the area measured in a flat spatial metric conformally related to the true metric.
July 29, 2016
We consider effects of non-uniformity of quasi-spherical small black hole horizons on scattering massless spineless particles in the long-wave approximation. Focusing on 4D flat and AdS neutral black hole backgrounds with conformally spherical geometry of the horizon, we observe the notable differences in compare to the scattering process on the spherically-symmetric black holes. In particular, the absorption cross-section becomes dependent on both, polar and azimuthal, spher...
September 21, 2016
In this paper, we provide a simple and modern discussion of rotational superradiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particl...
July 18, 2023
In this paper, we consider the Schwarzschild-Tangherlini black hole to investigate the process of scalar wave scattering by the black hole in a spacetime of (d + 1) dimensions and also with the generalized uncertainty principle (GUP). In this scenario, we analytically determine the phase shift and explore the effect of extra dimensions by calculating the differential scattering and absorption cross-section by applying the partial wave method at low and high-frequency limits. ...