ID: 2308.11355

Machine learning assisted exploration for affine Deligne-Lusztig varieties

August 22, 2023

View on ArXiv
Bin Dong, Xuhua He, Pengfei Jin, Felix Schremmer, Qingchao Yu
Mathematics
Computer Science
Algebraic Geometry
Machine Learning
Representation Theory

This paper presents a novel, interdisciplinary study that leverages a Machine Learning (ML) assisted framework to explore the geometry of affine Deligne-Lusztig varieties (ADLV). The primary objective is to investigate the nonemptiness pattern, dimension and enumeration of irreducible components of ADLV. Our proposed framework demonstrates a recursive pipeline of data generation, model training, pattern analysis, and human examination, presenting an intricate interplay between ML and pure mathematical research. Notably, our data-generation process is nuanced, emphasizing the selection of meaningful subsets and appropriate feature sets. We demonstrate that this framework has a potential to accelerate pure mathematical research, leading to the discovery of new conjectures and promising research directions that could otherwise take significant time to uncover. We rediscover the virtual dimension formula and provide a full mathematical proof of a newly identified problem concerning a certain lower bound of dimension. Furthermore, we extend an open invitation to the readers by providing the source code for computing ADLV and the ML models, promoting further explorations. This paper concludes by sharing valuable experiences and highlighting lessons learned from this collaboration.

Similar papers 1

Algebraic Machine Learning with an Application to Chemistry

May 11, 2022

86% Match
Ezzeddine El Sai, Parker Gara, Markus J. Pflaum
Algebraic Geometry
Computational Geometry
Machine Learning
Mathematical Physics

As datasets used in scientific applications become more complex, studying the geometry and topology of data has become an increasingly prevalent part of the data analysis process. This can be seen for example with the growing interest in topological tools such as persistent homology. However, on the one hand, topological tools are inherently limited to providing only coarse information about the underlying space of the data. On the other hand, more geometric approaches rely p...

Find SimilarView on arXiv

Machine-Learning Mathematical Structures

January 15, 2021

86% Match
Yang-Hui He
Machine Learning
History and Overview
History and Philosophy of Ph...

We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...

Find SimilarView on arXiv

Mathematical Data Science

February 12, 2025

86% Match
Michael R. Douglas, Kyu-Hwan Lee
History and Overview
Machine Learning
Combinatorics
Number Theory
Representation Theory

Can machine learning help discover new mathematical structures? In this article we discuss an approach to doing this which one can call "mathematical data science". In this paradigm, one studies mathematical objects collectively rather than individually, by creating datasets and doing machine learning experiments and interpretations. After an overview, we present two case studies: murmurations in number theory and loadings of partitions related to Kronecker coefficients in re...

Find SimilarView on arXiv
Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier, ... , Majumder Suvajit
Algebraic Geometry

We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${\sim}1$ mean absolute error, whilst classifiers predict dimension and Gorenstein index to $>90\%$ accuracy with ${\sim}0.5\%$ standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding $95\%$. Neura...

Machine Learning in Physics and Geometry

March 22, 2023

86% Match
Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Find SimilarView on arXiv

Algebraic Learning: Towards Interpretable Information Modeling

March 13, 2022

85% Match
Tong Owen Yang
Machine Learning
Artificial Intelligence

Along with the proliferation of digital data collected using sensor technologies and a boost of computing power, Deep Learning (DL) based approaches have drawn enormous attention in the past decade due to their impressive performance in extracting complex relations from raw data and representing valuable information. Meanwhile, though, rooted in its notorious black-box nature, the appreciation of DL has been highly debated due to the lack of interpretability. On the one hand,...

Find SimilarView on arXiv

When not to use machine learning: a perspective on potential and limitations

October 6, 2022

84% Match
M. R. Carbone
Machine Learning
Materials Science

The unparalleled success of artificial intelligence (AI) in the technology sector has catalyzed an enormous amount of research in the scientific community. It has proven to be a powerful tool, but as with any rapidly developing field, the deluge of information can be overwhelming, confusing and sometimes misleading. This can make it easy to become lost in the same hype cycles that have historically ended in the periods of scarce funding and depleted expectations known as AI W...

Find SimilarView on arXiv

Machine Learning the Dimension of a Polytope

July 15, 2022

84% Match
Tom Coates, Johannes Hofscheier, Alexander Kasprzyk
Combinatorics

We use machine learning to predict the dimension of a lattice polytope directly from its Ehrhart series. This is highly effective, achieving almost 100% accuracy. We also use machine learning to recover the volume of a lattice polytope from its Ehrhart series, and to recover the dimension, volume, and quasi-period of a rational polytope from its Ehrhart series. In each case we achieve very high accuracy, and we propose mathematical explanations for why this should be so.

Find SimilarView on arXiv

Machine Learning Algebraic Geometry for Physics

April 21, 2022

84% Match
Jiakang Bao, Yang-Hui He, ... , Hirst Edward
Algebraic Geometry
Machine Learning

We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...

Find SimilarView on arXiv

Can Transformers Do Enumerative Geometry?

August 27, 2024

84% Match
Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto
Machine Learning
Algebraic Geometry

How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a new paradigm in computational enumerative geometry in analyzing the $\psi$-class intersection numbers on the moduli space of curves. By formulating the enumerative problem as a continuous optimization task, we develop a Transformer-based model for computing $\psi...

Find SimilarView on arXiv