ID: 2309.05473

Machine learning the dimension of a Fano variety

September 11, 2023

View on ArXiv
Tom Coates, Alexander M. Kasprzyk, Sara Veneziale
Mathematics
Computer Science
Algebraic Geometry
Machine Learning

Fano varieties are basic building blocks in geometry - they are `atomic pieces' of mathematical shapes. Recent progress in the classification of Fano varieties involves analysing an invariant called the quantum period. This is a sequence of integers which gives a numerical fingerprint for a Fano variety. It is conjectured that a Fano variety is uniquely determined by its quantum period. If this is true, one should be able to recover geometric properties of a Fano variety directly from its quantum period. We apply machine learning to the question: does the quantum period of X know the dimension of X? Note that there is as yet no theoretical understanding of this. We show that a simple feed-forward neural network can determine the dimension of X with 98% accuracy. Building on this, we establish rigorous asymptotics for the quantum periods of a class of Fano varieties. These asymptotics determine the dimension of X from its quantum period. Our results demonstrate that machine learning can pick out structure from complex mathematical data in situations where we lack theoretical understanding. They also give positive evidence for the conjecture that the quantum period of a Fano variety determines that variety.

Similar papers 1

Machine learning detects terminal singularities

October 31, 2023

92% Match
Tom Coates, Alexander M. Kasprzyk, Sara Veneziale
Algebraic Geometry
Machine Learning

Algebraic varieties are the geometric shapes defined by systems of polynomial equations; they are ubiquitous across mathematics and science. Amongst these algebraic varieties are Q-Fano varieties: positively curved shapes which have Q-factorial terminal singularities. Q-Fano varieties are of fundamental importance in geometry as they are "atomic pieces" of more complex shapes - the process of breaking a shape into simpler pieces in this sense is called the Minimal Model Progr...

Find SimilarView on arXiv

Machine Learning the Dimension of a Polytope

July 15, 2022

88% Match
Tom Coates, Johannes Hofscheier, Alexander Kasprzyk
Combinatorics

We use machine learning to predict the dimension of a lattice polytope directly from its Ehrhart series. This is highly effective, achieving almost 100% accuracy. We also use machine learning to recover the volume of a lattice polytope from its Ehrhart series, and to recover the dimension, volume, and quasi-period of a rational polytope from its Ehrhart series. In each case we achieve very high accuracy, and we propose mathematical explanations for why this should be so.

Find SimilarView on arXiv
Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier, ... , Majumder Suvajit
Algebraic Geometry

We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${\sim}1$ mean absolute error, whilst classifiers predict dimension and Gorenstein index to $>90\%$ accuracy with ${\sim}0.5\%$ standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding $95\%$. Neura...

Learning Algebraic Models of Quantum Entanglement

August 27, 2019

85% Match
Hamza Jaffali, Luke Oeding
Machine Learning
Emerging Technologies
Algebraic Geometry
Machine Learning

We review supervised learning and deep neural network design for learning membership on algebraic varieties. We demonstrate that these trained artificial neural networks can predict the entanglement type for quantum states. We give examples for detecting degenerate states, as well as border rank classification for up to 5 binary qubits and 3 qutrits (ternary qubits).

Find SimilarView on arXiv

Decoding Quantum Field Theory with Machine Learning

October 8, 2019

84% Match
Daniel Grimmer, Irene Melgarejo-Lermas, ... , Martín-Martínez Eduardo
Quantum Physics
General Relativity and Quant...
High Energy Physics - Theory

We demonstrate how one can use machine learning techniques to bypass the technical difficulties of designing an experiment and translating its outcomes into concrete claims about fundamental features of quantum fields. In practice, all measurements of quantum fields are carried out through local probes. Despite measuring only a small portion of the field, such local measurements have the capacity to reveal many of the field's global features. This is because, when in equilibr...

Find SimilarView on arXiv

Estimate of the Neural Network Dimension using Algebraic Topology and Lie Theory

April 6, 2020

84% Match
Luciano Melodia, Richard Lenz
Machine Learning
Computational Geometry
Machine Learning
Neural and Evolutionary Comp...

In this paper we present an approach to determine the smallest possible number of neurons in a layer of a neural network in such a way that the topology of the input space can be learned sufficiently well. We introduce a general procedure based on persistent homology to investigate topological invariants of the manifold on which we suspect the data set. We specify the required dimensions precisely, assuming that there is a smooth manifold on or near which the data are located...

Find SimilarView on arXiv

Learning knot invariants across dimensions

November 30, 2021

84% Match
Jessica Craven, Mark Hughes, ... , Kar Arjun
Machine Learning
Geometric Topology

We use deep neural networks to machine learn correlations between knot invariants in various dimensions. The three-dimensional invariant of interest is the Jones polynomial $J(q)$, and the four-dimensional invariants are the Khovanov polynomial $\text{Kh}(q,t)$, smooth slice genus $g$, and Rasmussen's $s$-invariant. We find that a two-layer feed-forward neural network can predict $s$ from $\text{Kh}(q,-q^{-4})$ with greater than $99\%$ accuracy. A theoretical explanation for ...

Find SimilarView on arXiv

Machine Learning Line Bundle Cohomology

June 20, 2019

84% Match
Callum R. Brodie, Andrei Constantin, ... , Lukas Andre
High Energy Physics - Theory

We investigate different approaches to machine learning of line bundle cohomology on complex surfaces as well as on Calabi-Yau three-folds. Standard function learning based on simple fully connected networks with logistic sigmoids is reviewed and its main features and shortcomings are discussed. It has been observed recently that line bundle cohomology can be described by dividing the Picard lattice into certain regions in each of which the cohomology dimension is described b...

Find SimilarView on arXiv

Dive into Layers: Neural Network Capacity Bounding using Algebraic Geometry

September 3, 2021

84% Match
Ji Yang, Lu Sang, Daniel Cremers
Machine Learning
Neural and Evolutionary Comp...

The empirical results suggest that the learnability of a neural network is directly related to its size. To mathematically prove this, we borrow a tool in topological algebra: Betti numbers to measure the topological geometric complexity of input data and the neural network. By characterizing the expressive capacity of a neural network with its topological complexity, we conduct a thorough analysis and show that the network's expressive capacity is limited by the scale of its...

Find SimilarView on arXiv

Machine Learning in Physics and Geometry

March 22, 2023

84% Match
Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Find SimilarView on arXiv