September 29, 2023
Similar papers 5
February 18, 2016
We discuss a Clifford algebra framework for discrete symmetry groups (such as reflection, Coxeter, conformal and modular groups), leading to a surprising number of new results. Clifford algebras allow for a particularly simple description of reflections via `sandwiching'. This extends to a description of orthogonal transformations in general by means of `sandwiching' with Clifford algebra multivectors, since all orthogonal transformations can be written as products of reflect...
February 18, 2016
$E_8$ is prominent in mathematics and theoretical physics, and is generally viewed as an exceptional symmetry in an eight-dimensional space very different from the space we inhabit; for instance the Lie group $E_8$ features heavily in ten-dimensional superstring theory. Contrary to that point of view, here we show that the $E_8$ root system can in fact be constructed from the icosahedron alone and can thus be viewed purely in terms of three-dimensional geometry. The $240$ roo...
March 30, 2020
Identifying symmetries in data sets is generally difficult, but knowledge about them is crucial for efficient data handling. Here we present a method how neural networks can be used to identify symmetries. We make extensive use of the structure in the embedding layer of the neural network which allows us to identify whether a symmetry is present and to identify orbits of the symmetry in the input. To determine which continuous or discrete symmetry group is present we analyse ...
October 24, 2023
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language processing and computer vision, largely attributed to deep learning, a special class of machine learning models. Deep learning arguably surpasses traditional approaches by learning the relevant features from raw data through a s...
October 6, 2023
This paper proposes an adjoint-equivariant neural network that takes Lie algebra data as input. Various types of equivariant neural networks have been proposed in the literature, which treat the input data as elements in a vector space carrying certain types of transformations. In comparison, we aim to process inputs that are transformations between vector spaces. The change of basis on transformation is described by conjugations, inducing the adjoint-equivariance relationshi...
May 31, 2023
Reductive Lie Groups, such as the orthogonal groups, the Lorentz group, or the unitary groups, play essential roles across scientific fields as diverse as high energy physics, quantum mechanics, quantum chromodynamics, molecular dynamics, computer vision, and imaging. In this paper, we present a general Equivariant Neural Network architecture capable of respecting the symmetries of the finite-dimensional representations of any reductive Lie Group G. Our approach generalizes t...
June 22, 2023
We study and classify a class of representations (called generalized geometric representations) of a Coxeter group of finite rank. These representations can be viewed as a natural generalization of the geometric representation. The classification is achieved by using characters of the integral homology group of certain graphs closely related to the Coxeter graph. On this basis, we also provide an explicit description of those representations on which the defining generators o...
July 25, 2023
We introduce a machine-learning approach (denoted Symmetry Seeker Neural Network) capable of automatically discovering discrete symmetry groups in physical systems. This method identifies the finite set of parameter transformations that preserve the system's physical properties. Remarkably, the method accomplishes this without prior knowledge of the system's symmetry or the mathematical relationships between parameters and properties. Demonstrating its versatility, we showcas...
July 30, 2009
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of t...
November 1, 2023
Symmetry is present throughout nature and continues to play an increasingly central role in physics and machine learning. Fundamental symmetries, such as Poincar\'{e} invariance, allow physical laws discovered in laboratories on Earth to be extrapolated to the farthest reaches of the universe. Symmetry is essential to achieving this extrapolatory power in machine learning applications. For example, translation invariance in image classification allows models with fewer parame...