October 4, 2023
Similar papers 5
June 30, 2020
Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...
August 4, 2020
We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...
December 2, 2015
We explore the distribution of topological numbers in Calabi-Yau manifolds, using the Kreuzer-Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Cala...
November 2, 2022
We automate the process of machine learning correlations between knot invariants. For nearly 200,000 distinct sets of input knot invariants together with an output invariant, we attempt to learn the output invariant by training a neural network on the input invariants. Correlation between invariants is measured by the accuracy of the neural network prediction, and bipartite or tripartite correlations are sequentially filtered from the input invariant sets so that experiments ...
May 8, 2014
We investigate the mathematical properties of the class of Calabi-Yau four-folds recently found in [arXiv:1303.1832]. This class consists of 921,497 configuration matrices which correspond to manifolds that are described as complete intersections in products of projective spaces. For each manifold in the list, we compute the full Hodge diamond as well as additional topological invariants such as Chern classes and intersection numbers. Using this data, we conclude that there a...
November 30, 2021
We use deep neural networks to machine learn correlations between knot invariants in various dimensions. The three-dimensional invariant of interest is the Jones polynomial $J(q)$, and the four-dimensional invariants are the Khovanov polynomial $\text{Kh}(q,t)$, smooth slice genus $g$, and Rasmussen's $s$-invariant. We find that a two-layer feed-forward neural network can predict $s$ from $\text{Kh}(q,-q^{-4})$ with greater than $99\%$ accuracy. A theoretical explanation for ...
February 4, 2022
We approach the well-studied problem of supervised group invariant and equivariant machine learning from the point of view of geometric topology. We propose a novel approach using a pre-processing step, which involves projecting the input data into a geometric space which parametrises the orbits of the symmetry group. This new data can then be the input for an arbitrary machine learning model (neural network, random forest, support-vector machine etc). We give an algorithm ...
April 27, 2022
We present a statistical approach for the discovery of relationships between mathematical entities that is based on linear regression and deep learning with fully connected artificial neural networks. The strategy is applied to computational knot data and empirical connections between combinatorial and hyperbolic knot invariants are revealed.
May 11, 2022
As datasets used in scientific applications become more complex, studying the geometry and topology of data has become an increasingly prevalent part of the data analysis process. This can be seen for example with the growing interest in topological tools such as persistent homology. However, on the one hand, topological tools are inherently limited to providing only coarse information about the underlying space of the data. On the other hand, more geometric approaches rely p...
November 5, 2014
Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, i...