October 15, 2023
Similar papers 2
July 21, 2012
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ with all partial quotients $d_1,d_2,...,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 ...
October 14, 2013
We prove there exists a density one subset $\dd \subset \N$ such that each $n \in \dd$ is the denominator of a finite continued fraction with partial quotients bounded by 5.
March 13, 2017
In the theory of continued fractions, Zaremba's conjecture states that there is a positive integer $M$ such that each integer is the denominator of a convergent of an ordinary continued fraction with partial quotients bounded by $M$. In this paper, to each such $M$ we associate a regular sequence---in the sense of Allouche and Shallit---and establish various properties and results concerning the generating function of the regular sequence. In particular, we determine the mini...
April 16, 2021
In recent work, the first two authors constructed a generalized continued fraction called the $p$-continued fraction, characterized by the property that its convergents (a subsequence of the regular convergents) are best approximations with respect to the $L^p$ norm, where $p\geq 1$. We extend this construction to the region $0<p<1$, where now the $L^p$ quasinorm is non-convex. We prove that the approximation coefficients of the $p$-continued fraction are bounded above by $1/...
August 31, 2016
Zaremba's Conjecture concerns the formation of continued fractions with partial quotients restricted to a given alphabet. In order to answer the numerous questions that arrive from this conjecture, it is best to consider a semi-group, often denoted $\Gamma_{A}$, which arises naturally as a subset of $SL_2(\mathbb{Z})$ when considering finite continued fractions. To translate back from this semi-group into rational numbers, we select a projection mapping satisfying certain cri...
October 25, 2022
In this paper, we study distributional properties of the sequence of partial quotients in the continued fraction expansion of fractions $a/N$, where $N$ is fixed and $a$ runs through the set of mod $N$ residue classes which are coprime with $N$. Our methods cover statistics such as the sum of partial quotients, the maximal partial quotient, the empirical distribution of partial quotients, Dedekind sums, and much more. We prove a sharp concentration inequality for the sum of p...
September 18, 2023
Let $p$ be a prime number and $K$ be a field with embeddings into $\mathbb{R}$ and $\mathbb{Q}_p$. We propose an algorithm that generates continued fraction expansions converging in $\mathbb{Q}_p$ and is expected to simultaneously converge in both $\mathbb{R}$ and $\mathbb{Q}_p$. This algorithm produces finite continued fraction expansions for rational numbers. In the case of $p=2$ and if $K$ is a quadratic field, the continued fraction expansions generated by this algorithm ...
April 24, 2023
The properties of continued fractions whose partial quotients belong to a quadratic number field K are distinct from those of classical continued fractions. Unlike classical continued fractions, it is currently impossible to identify elements with periodic continued fraction expansions, akin to Lagrange's theorem. In this paper, we fix a real quadratic field K and take an ultimately periodic continued fraction with partial quotients in $\mathcal{O}_K$. We analyze its converge...
July 19, 2011
Zaremba's 1971 conjecture predicts that every integer appears as the denominator of a finite continued fraction whose partial quotients are bounded by an absolute constant. We confirm this conjecture for a set of density one.
February 27, 2004
In some recent papers, the authors considered regular continued fractions of the form \[ [a_{0};\underbrace{a,...,a}_{m}, \underbrace{a^{2},...,a^{2}}_{m}, \underbrace{a^{3},...,a^{3}}_{m}, ... ], \] where $a_{0} \geq 0$, $a \geq 2$ and $m \geq 1$ are integers. The limits of such continued fractions, for general $a$ and in the cases $m=1$ and $m=2$, were given as ratios of certain infinite series. However, these formulae can be derived from known facts about two continued f...