October 19, 2023
Mathematics is one of the most powerful conceptual systems developed and used by the human species. Dreams of automated mathematicians have a storied history in artificial intelligence (AI). Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems. In this work, we reflect on these goals from a \textit{cognitive science} perspective. We call attention to several classical and ongoing research directions from cognitive science, which we believe are valuable for AI practitioners to consider when seeking to build truly human (or superhuman)-level mathematical systems. We close with open discussions and questions that we believe necessitate a multi-disciplinary perspective -- cognitive scientists working in tandem with AI researchers and mathematicians -- as we move toward better mathematical AI systems which not only help us push the frontier of the mathematics, but also offer glimpses into how we as humans are even capable of such great cognitive feats.
Similar papers 1
December 21, 2024
This paper presents a comprehensive overview on the applications of artificial intelligence (AI) in mathematical research, highlighting the transformative role AI has begun to play in this domain. Traditionally, AI advancements have heavily relied on theoretical foundations provided by mathematics and statistics. However, recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribut...
December 20, 2024
AI for Mathematics (AI4Math) is not only intriguing intellectually but also crucial for AI-driven discovery in science, engineering, and beyond. Extensive efforts on AI4Math have mirrored techniques in NLP, in particular, training large language models on carefully curated math datasets in text form. As a complementary yet less explored avenue, formal mathematical reasoning is grounded in formal systems such as proof assistants, which can verify the correctness of reasoning a...
January 31, 2024
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challe...
February 11, 2025
Computers have already changed the way that humans do mathematics: they enable us to compute efficiently. But will they soon be helping us to reason? And will they one day start reasoning themselves? We give an overview of recent developments in neural networks, computer theorem provers and large language models.
October 4, 2023
These informal notes are based on the author's lecture at the National Academies of Science, Engineering, and Mathematics workshop on "AI to Assist Mathematical Reasoning" in June 2023. The goal is to think through a path by which we might arrive at AI that is useful for the research mathematician.
December 20, 2022
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful...
April 23, 2019
Over the last decades, a class of important mathematical results have required an ever increasing amount of human effort to carry out. For some, the help of computers is now indispensable. We analyze the implications of this trend towards "big mathematics", its relation to human cognition, and how machine support for big math can be organized. The central contribution of this position paper is an information model for "doing mathematics", which posits that humans very efficie...
December 12, 2023
In recent years, there has been remarkable progress in leveraging Language Models (LMs), encompassing Pre-trained Language Models (PLMs) and Large-scale Language Models (LLMs), within the domain of mathematics. This paper conducts a comprehensive survey of mathematical LMs, systematically categorizing pivotal research endeavors from two distinct perspectives: tasks and methodologies. The landscape reveals a large number of proposed mathematical LLMs, which are further delinea...
May 30, 2022
Informal mathematical text underpins real-world quantitative reasoning and communication. Developing sophisticated methods of retrieval and abstraction from this dual modality is crucial in the pursuit of the vision of automating discovery in quantitative science and mathematics. We track the development of informal mathematical language processing approaches across five strategic sub-areas in recent years, highlighting the prevailing successful methodological elements along ...
December 16, 2024
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs). We review over 200 studies pu...