October 24, 2023
Similar papers 2
December 16, 2021
Using a fully connected feedforward neural network we study topological invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in toric varieties associated with reflexive polytopes from the Kreuzer--Skarke database. In particular, we find the existence of a simple expression for the Euler number that can be learned in terms of limited data extracted from the polytope and its dual.
July 27, 2020
We introduce a neural network inspired by Google's Inception model to compute the Hodge number $h^{1,1}$ of complete intersection Calabi-Yau (CICY) 3-folds. This architecture improves largely the accuracy of the predictions over existing results, giving already 97% of accuracy with just 30% of the data for training. Moreover, accuracy climbs to 99% when using 80% of the data for training. This proves that neural networks are a valuable resource to study geometric aspects in b...
March 7, 2019
Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...
September 21, 2022
Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...
November 15, 2018
We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...
April 17, 2024
Gaussian Process Regression, Kernel Support Vector Regression, the random forest, extreme gradient boosting and the generalized linear model algorithms are applied to data of Complete Intersection Calabi-Yau 3-folds. It is shown that Gaussian process regression is the most suitable for learning the Hodge number h^(2,1)in terms of h^(1,1). The performance of this regression algorithm is such that the Pearson correlation coefficient for the validation set is R^2 = 0.9999999995 ...
April 18, 2019
We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...
December 12, 2021
We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
December 7, 2018
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...