April 24, 2015
The present paper is devoted to generalizing, inside the class of projective toric varieties, the classification [Batyrev91], performed by Batyrev in 1991 for smooth complete toric varieties, to the singular $Q$--factorial case. Moreover, in the first part of the paper the Kleinschmidt classification of smooth complete toric varieties of Picard number 2 [Kleinschmidt] is revised.
May 28, 2002
In this paper, we obtain a complete classification of smooth toric Fano varieties equipped with extremal contractions which contract divisors to curves for any dimension. As an application, we obtain a complete classification of smooth projective toric varieties which can be equivariantly blown-up to Fano along curves.
February 3, 2022
We study the Picard rank of smooth toric Fano varieties possessing families of minimal rational curves of given degree. We discuss variants of a conjecture of Chen-Fu-Hwang and prove a version of their statement that recovers the original conjecture in sufficiently high dimension. We also prove new cases of the original conjecture for high degrees in all dimensions. Our main tools come from toric Mori theory and the combinatorics of Fano polytopes.
November 15, 2018
We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
March 28, 2017
We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e. each data point is a solution to a system of polynomial equations. In this case the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, including affine subspaces and their union, can be described by a variety model. In ...
July 27, 2020
The Gauss-Manin connection of a family of hypersurfaces governs the change of the period matrix along the family. This connection can be complicated even when the equations defining the family look simple. When this is the case, it is computationally expensive to compute the period matrices of varieties in the family via homotopy continuation. We train neural networks that can quickly and reliably guess the complexity of the Gauss-Manin connection of a pencil of hypersurfaces...
September 23, 2022
New algorithms for prime factorization that outperform the existing ones or take advantage of particular properties of the prime factors can have a practical impact on present implementations of cryptographic algorithms that rely on the complexity of factorization. Currently used keys are chosen on the basis of the present algorithmic knowledge and, thus, can potentially be subject to future breaches. For this reason, it is worth to investigate new approaches which have the p...
February 1, 2024
We study the expressivity and learning process for polynomial neural networks (PNNs) with monomial activation functions. The weights of the network parametrize the neuromanifold. In this paper, we study certain neuromanifolds using tools from algebraic geometry: we give explicit descriptions as semialgebraic sets and characterize their Zariski closures, called neurovarieties. We study their dimension and associate an algebraic degree, the learning degree, to the neurovariety....
January 14, 2013
We investigate Fano schemes of conditionally generic intersections, i.e. of hypersurfaces in projective space chosen generically up to additional conditions. Via a correspondence between generic properties of algebraic varieties and events in probability spaces that occur with probability one, we use the obtained results on Fano schemes to solve a problem in machine learning.