June 14, 2024
In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discre...
December 21, 2016
Optical isolation, non-reciprocal phase transmission and topological phases for light based on synthetic gauge fields have been raising significant interest in the recent literature. Cavity-optomechanical systems that involve two optical modes coupled to a common mechanical mode form an ideal platform to realize these effects, providing the basis for various recent demonstrations of optomechanically induced non-reciprocal light transmission. Here, we establish a unifying theo...
July 25, 2023
Being ubiquitous, solitons have particle-like properties, exhibiting behaviour often associated with atoms. Bound solitons emulate dynamics of molecules, though solitonic analogues of polymeric materials have not been considered yet. Here we experimentally create and model soliton polymers, which we call polyskyrmionomers, built of atom-like individual solitons characterized by the topological invariant representing the skyrmion number. With the help of nonlinear optical imag...
February 25, 2020
We introduce a method to design topological mechanical metamaterials that are not constrained by Newtonian dynamics. The unit cells in a mechanical lattice are subjected to active feedback forces that are processed through autonomous controllers, pre-programmed to generate the desired local response in real-time. As an example, we focus on the quantum Haldane model, which is a two-band system with directional complex coupling terms, violating Newton's third law. We demonstrat...
October 21, 2016
Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal, or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles f...
February 21, 2020
We propose a platform for robust and tunable nonreciprocal phonon transport based on arrays of optomechanical microtoroids. In our approach, time-reversal symmetry is broken by the interplay of photonic spin-orbit coupling, engineered using a state-of-the-art geometrical approach, and the optomechanical interaction. We demonstrate the topologically protected nature of this system by investigating its robustness to imperfections. This type of system could find application in p...
January 7, 2021
Using a coupled parametric-resonator array for generating and propagating a topological soliton in its rotating-frame phase space is theoretically and numerically investigated. In an analogy with the well-known phi4 model, the existence of a soliton is topologically protected as the boundary of two different phase domains of parametric oscillation. Numerical simulation indicates that the propagation can be triggered by switching of the phase state of one specific resonator, a...
July 23, 2024
Self-propulsion is a quintessential aspect of biological systems, which can induce nonequilibrium phenomena that have no counterparts in passive systems. Motivated by biophysical interest together with recent advances in experimental techniques, active matter has been a rapidly developing field in physics. Meanwhile, over the past few decades, topology has played a crucial role to understand certain robust properties appearing in condensed matter systems. For instance, the no...
July 10, 2018
Phononic resonators play important roles in settings that range from gravitational wave detectors to cellular telephones. They serve as high-performance transducers, sensors, and filters by offering low dissipation, tunable coupling to diverse physical systems, and compatibility with a wide range of frequencies, materials, and fabrication processes. Systems of phononic resonators typically obey reciprocity, which ensures that the phonon transmission coefficient between any tw...
February 7, 2009
We put forward a strategy to achieve synthetic nonlinearities where local and nonlocal contributions compete on similar footing, thus yielding intermediate tunable responses ranging from fully local to strongly nonlocal. The physical setting addressed is a semiconductor material with both Kerr and thermal nonlinearities illuminated by a pulse train with suitable single-pulse width and repetition rate. We illustrate the potential of the scheme by showing that it supports solit...