December 7, 2023
Similar papers 4
September 6, 1996
In this paper we compute the low energy absorption cross-section for minimally coupled massles scalars and spin-$1/2$ particles, into a general spherically symmetric black hole in arbitrary dimensions. The scalars have a cross section equal to the area of the black hole, while the spin-$1/2$ particles give the area measured in a flat spatial metric conformally related to the true metric.
February 24, 2016
In June 2015 the Large Hadron Collider was able to produce collisions with an energy of 13TeV, where collisions at these energy levels may allow for the formation of higher dimensional black holes. In order to detect these higher dimensional black holes we require an understanding of their emission spectra. One way of determining this is by looking at the absorption probabilities associated with the black hole. In this proceedings we will look at the absorption probability fo...
February 9, 2024
We revisit the quantum-amplitude-based derivation of the gravitational waveform emitted by the scattering of two spinless massive bodies at the third order in Newton's constant, $h \sim G+G^2+G^3$ (one-loop level), and correspondingly update its comparison with its classically-derived multipolar-post-Minkowskian counterpart. A spurious-pole-free reorganization of the one-loop five-point amplitude substantially simplifies the post-Newtonian expansion. We find complete agreemen...
April 9, 2023
Using the recently derived higher spin gravitational Compton amplitude from low-energy analytically continued ($a/Gm\gg1$) solutions of the Teukolsky equation for the scattering of a gravitational wave off the Kerr black hole, observables for non-radiating super-extremal Kerr binary systems at second post-Minkowskian (PM) order and up to sixth order in spin are computed. The relevant 2PM amplitude is obtained from the triangle-leading singularity in conjunction with a general...
March 11, 2022
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes of ref. \cite{Arkani-Hamed:2017jhn}) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose cont...
July 16, 2024
In a recent work we showed that the detection of the exchange of a single graviton between a massive quantum resonator and a gravitational wave can be achieved. Key to this ability are the experimental progress in preparing and measuring massive resonators in the quantum regime, and the correlation with independent LIGO detections of gravitational waves that induce stimulated absorption. But do stimulated single-graviton processes imply the quantization of gravity? Here we an...
May 2, 2023
The study of long-range effects arising from the higher order exchange of massless particles via summation of Feynman diagrams is well known, but recently it has been shown that the use of on-shell methods can provide a streamlined route to the calculation of both electromagnetic and gravitational effects. In this note we demonstrate that the use of on-shell methods yields a similar simplification in the evaluation of higher order effects in the case of mixed electromagnetic ...
October 16, 2003
After commenting on the early search for a mechanism explaining the Newtonian action-at-a-distance gravitational law we review non-Newtonian effects occurring in certain ansatzes for shielding, screening and absorption effects in pre-relativistic theories of gravity. Mainly under the aspect of absorption and suppression (or amplification), we then consider some implications of these ansatzes for relativistic theories of gravity and discuss successes and problems in establishi...
March 24, 2022
The post-Minkowskian expansion of Einstein's general theory of relativity has received much attention in recent years due to the possibility of harnessing the computational power of modern amplitude calculations in such a classical context. In this brief review, we focus on the post-Minkowskian expansion as applied to the two-body problem in general relativity without spin, and we describe how relativistic quantum field theory can be used to greatly simplify analytical calcul...
February 3, 2015
It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.