December 11, 2023
Similar papers 3
October 15, 2021
Invariant and equivariant networks are useful in learning data with symmetry, including images, sets, point clouds, and graphs. In this paper, we consider invariant and equivariant networks for symmetries of finite groups. Invariant and equivariant networks have been constructed by various researchers using Reynolds operators. However, Reynolds operators are computationally expensive when the order of the group is large because they use the sum over the whole group, which pos...
April 10, 2021
Recent works show that group equivariance as an inductive bias improves neural network performance for both classification and generation. However, designing group-equivariant neural networks is challenging when the group of interest is large and is unknown. Moreover, inducing equivariance can significantly reduce the number of independent parameters in a network with fixed feature size, affecting its overall performance. We address these problems by proving a new group-theor...
February 12, 2024
In the evolving landscape of machine learning, a pivotal challenge lies in deciphering the internal representations harnessed by neural networks and Transformers. Building on recent progress toward comprehending how networks execute distinct target functions, our study embarks on an exploration of the underlying reasons behind networks adopting specific computational strategies. We direct our focus to the complex algebraic learning task of modular addition involving $k$ input...
October 9, 2022
Symmetries built into a neural network have appeared to be very beneficial for a wide range of tasks as it saves the data to learn them. We depart from the position that when symmetries are not built into a model a priori, it is advantageous for robust networks to learn symmetries directly from the data to fit a task function. In this paper, we present a method to extract symmetries learned by a neural network and to evaluate the degree to which a network is invariant to them...
October 8, 2020
We introduce an algorithm for designing Neural Group Actions, collections of deep neural network architectures which model symmetric transformations satisfying the laws of a given finite group. This generalizes involutive neural networks $\mathcal{N}$, which satisfy $\mathcal{N}(\mathcal{N}(x))=x$ for any data $x$, the group law of $\mathbb{Z}_2$. We show how to optionally enforce an additional constraint that the group action be volume-preserving. We conjecture, by analogy t...
March 8, 2023
We introduce and investigate, for finite groups $G$, $G$-invariant deep neural network ($G$-DNN) architectures with ReLU activation that are densely connected-- i.e., include all possible skip connections. In contrast to other $G$-invariant architectures in the literature, the preactivations of the$G$-DNNs presented here are able to transform by \emph{signed} permutation representations (signed perm-reps) of $G$. Moreover, the individual layers of the $G$-DNNs are not require...
December 27, 2020
Group symmetry is inherent in a wide variety of data distributions. Data processing that preserves symmetry is described as an equivariant map and often effective in achieving high performance. Convolutional neural networks (CNNs) have been known as models with equivariance and shown to approximate equivariant maps for some specific groups. However, universal approximation theorems for CNNs have been separately derived with individual techniques according to each group and se...
April 8, 2015
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called {\em pretraining}: first search for a good generative model for the input samples, and repeat the process one layer at a time. We show deeper implicat...
May 27, 2019
Researchers are actively trying to gain better insights into the representational properties of convolutional neural networks for guiding better network designs and for interpreting a network's computational nature. Gaining such insights can be an arduous task due to the number of parameters in a network and the complexity of a network's architecture. Current approaches of neural network interpretation include Bayesian probabilistic interpretations and information theoretic i...
October 12, 2021
Group equivariant convolutional neural networks (G-CNNs) are generalizations of convolutional neural networks (CNNs) which excel in a wide range of technical applications by explicitly encoding symmetries, such as rotations and permutations, in their architectures. Although the success of G-CNNs is driven by their \emph{explicit} symmetry bias, a recent line of work has proposed that the \emph{implicit} bias of training algorithms on particular architectures is key to underst...