January 4, 2024
Similar papers 4
January 28, 2024
In this study, I employ a multifaceted comprehensive scientometric approach to explore the intellectual underpinnings of AI and ML in financial research by examining the publication patterns of articles, journals, authors, institutions, and nations by leveraging quantitative techniques, that transcend conventional systematic literature reviews, enabling the effective analysis of vast scientometric and bibliographic data. By applying these approaches, I identify influential wo...
April 28, 2023
Price forecasting for used construction equipment is a challenging task due to spatial and temporal price fluctuations. It is thus of high interest to automate the forecasting process based on current market data. Even though applying machine learning (ML) to these data represents a promising approach to predict the residual value of certain tools, it is hard to implement for small and medium-sized enterprises due to their insufficient ML expertise. To this end, we demonstrat...
May 11, 2022
Emerging technologies can have major economic impacts and affect strategic stability. Yet, early identification of emerging technologies remains challenging. In order to identify emerging technologies in a timely and reliable manner, a comprehensive examination of relevant scientific and technological (S&T) trends and their related references is required. This examination is generally done by domain experts and requires significant amounts of time and effort to gain insights....
April 2, 2022
Electricity price forecasting (EPF) is a branch of forecasting on the interface of electrical engineering, statistics, computer science, and finance, which focuses on predicting prices in wholesale electricity markets for a whole spectrum of horizons. These range from a few minutes (real-time/intraday auctions and continuous trading), through days (day-ahead auctions), to weeks, months or even years (exchange and over-the-counter traded futures and forward contracts). Over th...
June 17, 2024
Context: Technical debt (TD) refers to the additional costs incurred due to compromises in software quality, providing short-term advantages during development but potentially compromising long-term quality. Accurate TD forecasting and prediction are vital for informed software maintenance and proactive management. However, this research area lacks comprehensive documentation on the available forecasting techniques. Objective: This study aims to explore existing knowledge in ...
December 23, 2020
In this paper we survey the most recent advances in supervised machine learning and high-dimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The nonlinear methods considered in the paper include shallow and deep neural networks, in their feed-forward and recurrent versions, and tree-based methods, such as random forests and boosted...
September 21, 2022
Frequent occurrences of extreme weather events substantially impact the lives of the less privileged in our societies, particularly in agriculture-inclined economies. The unpredictability of extreme fires, floods, drought, cyclones, and others endangers sustainable production and life on land (SDG goal 15), which translates into food insecurity and poorer populations. Fortunately, modern technologies such as Artificial Intelligent (AI), the Internet of Things (IoT), blockchai...
May 16, 2018
This paper introduces a method for linking technological improvement rates (i.e. Moore's Law) and technology adoption curves (i.e. S-Curves). There has been considerable research surrounding Moore's Law and the generalized versions applied to the time dependence of performance for other technologies. The prior work has culminated with methodology for quantitative estimation of technological improvement rates for nearly any technology. This paper examines the implications of s...
May 31, 2023
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenge...
April 14, 2016
Analysis and prediction of stock market time series data has attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data, and availability of high-performance hardware has made it possible to process and analyze high volume stock market time series data effectively, in real-time. Among many other important characteristics and behavior of such data, fo...