February 15, 2024
Similar papers 4
July 24, 2019
Link streams model interactions over time in a wide range of fields. Under this model, the challenge is to mine efficiently both temporal and topological structures. Community detection and change point detection are one of the most powerful tools to analyze such evolving interactions. In this paper, we build on both to detect stable community structures by identifying change points within meaningful communities. Unlike existing dynamic community detection algorithms, the pro...
January 22, 2019
In this work, we propose a new, fast and scalable method for anomaly detection in large time-evolving graphs. It may be a static graph with dynamic node attributes (e.g. time-series), or a graph evolving in time, such as a temporal network. We define an anomaly as a localized increase in temporal activity in a cluster of nodes. The algorithm is unsupervised. It is able to detect and track anomalous activity in a dynamic network despite the noise from multiple interfering sour...
April 14, 2023
Communities often represent key structural and functional clusters in networks. To preserve such communities, it is important to understand their robustness under network perturbations. Previous work in community robustness analysis has focused on studying changes in the community structure as a response of edge rewiring and node or edge removal. However, the impact of increasing connectivity on the robustness of communities in networked systems is relatively unexplored. Stud...
July 16, 2020
Many algorithms have been proposed in the last ten years for the discovery of dynamic communities. However, these methods are seldom compared between themselves. In this article, we propose a generator of dynamic graphs with planted evolving community structure, as a benchmark to compare and evaluate such algorithms. Unlike previously proposed benchmarks, it is able to specify any desired evolving community structure through a descriptive language, and then to generate the co...
May 5, 2016
Many evolving complex systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which identifies groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share one community organization. In reality, the truth likely lies between these two extremes, since some time periods can have community organ...
June 20, 2012
We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examin...
July 30, 2022
A fundamental technical challenge in the analysis of network data is the automated discovery of communities - groups of nodes that are strongly connected or that share similar features or roles. In this commentary we review progress in the field over the last 20 years.
April 24, 2018
Although the computational and statistical trade-off for modeling single graphs, for instance, using block models is relatively well understood, extending such results to sequences of graphs has proven to be difficult. In this work, we take a step in this direction by proposing two models for graph sequences that capture: (a) link persistence between nodes across time, and (b) community persistence of each node across time. In the first model, we assume that the latent commun...
February 15, 2015
Most methods proposed to uncover communities in complex networks rely on combinatorial graph properties. Usually an edge-counting quality function, such as modularity, is optimized over all partitions of the graph compared against a null random graph model. Here we introduce a systematic dynamical framework to design and analyze a wide variety of quality functions for community detection. The quality of a partition is measured by its Markov Stability, a time-parametrized func...
April 3, 2017
As a representation of relational data over time series, longitudinal networks provide opportunities to study link formation processes. However, networks at scale often exhibits community structure (i.e. clustering), which may confound local structural effects if it is not considered appropriately in statistical analysis. To infer the (possibly) evolving clusters and other network structures (e.g. degree distribution and/or transitivity) within each community, simultaneously,...