July 1, 2015
This article sets up a formalism to describe stochastic thermodynamics for driven out-of-equilibrium open quantum systems. A stochastic Schr\"odinger equation allows to construct quantum trajectories describing the dynamics of the system state vector in presence of an eventually monitored environment. Thermodynamic quantities are defined at the single quantum trajectory level, independently of any energy measurement, at any time of the protocol. We thereby identify coherent c...
February 29, 2024
A key question in the thermodynamics of open quantum systems is how to partition thermodynamic quantities such as entropy, work, and internal energy between the system and its environment. We show that the only partition under which entropy is non-singular is based on a partition of Hilbert-space, which assigns half the system-environment coupling to the system and half to the environment. However, quantum work partitions non-trivially under Hilbert-space partition, and we de...
February 2, 2021
Despite the increasing interest, the research field which studies the concepts of work and heat at quantum level has suffered from two main drawbacks: first, the difficulty to properly define and measure the work, heat and internal energy variation in a quantum system and, second, the lack of experiments. Here, we report a full characterization of the dissipated heat, work and internal energy variation in a two-level quantum system interacting with an engineered environment. ...
June 19, 2024
Quantum thermodynamic process involves manipulating and controlling quantum states to extract energy or perform computational tasks with high efficiency. There is still no efficientgeneral method to theoretically quantify the effect of the quantumness of coherence and entanglement in work extraction. In this work, we propose a thermodynamics speed to quantify theextracting work. We show that the coherence of quantum systems can speed up work extractingwith respect to some cyc...
June 15, 2024
"A battery powers a device" can be read as "work stored in the battery is being transported to the device." In quantum batteries, the total amount of stored work can be measured by ergotropy, which is the maximal work extractable by unitary operations. Transporting ergotropy is fundamentally different from transporting energy, and here we find that ergotropy can be gained even when the transmission channel is strictly energy conserving. We show that, generically, ergotropy tr...
October 4, 2018
We consider work extraction from $N$ copies of a quantum system. When the same work-extraction process is implemented on each copy, the relative size of fluctuations is expected to decay as $1/\sqrt{N}$. Here, we consider protocols where the copies can be processed collectively, and show that in this case work fluctuations can disappear exponentially fast in $N$. As a consequence, a considerable proportion of the average extractable work $\mathcal{W}$ can be obtained almost d...
November 25, 2021
We study the statistical distribution of the ergotropy and of the efficiency of a single-qubit battery ad of a single-qubit Otto engine, respectively fuelled by random collisions. The single qubit, our working fluid, is assumed to exchange energy with two reservoirs, a non-equilibrium "hot" reservoir and a zero temperature cold reservoir. The interactions between the qubit and the reservoirs is described in terms of a collision model of open system dynamics. The qubit interac...
August 17, 2007
By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Exa...
July 21, 2017
Exploiting the relative entropy of coherence, we isolate the coherent contribution in the energetics of a driven non-equilibrium quantum system. We prove that a division of the irreversible work can be made into a coherent and incoherent part, which provides an operational criterion for quantifying the coherent contribution in a generic non-equilibrium transformation on a closed quantum system. We then study such a contribution in two physical models of a driven qubit and kic...
October 7, 2022
We introduce a generalized approach to characterize the non-Markovianity of quantum dynamical maps via breakdown of monotonicity of thermodynamic functions. By adopting an entropy-based formulation of quantum thermodynamics, we use the relationship between heat and entropy to propose a measure of non-Markovianity based on the heat flow for single-qubit quantum evolutions. This measure can be applied for unital dynamical maps that do not invert the sign of the internal energy....