ID: 2403.07402

Renormalization of Complex Networks with Partition Functions

March 12, 2024

View on ArXiv
Sungwon Jung, Sang Hoon Lee, Jaeyoon Cho
Condensed Matter
Physics
Statistical Mechanics
Physics and Society

While renormalization groups are fundamental in physics, renormalization of complex networks remains vague in its conceptual definition and methodology. Here, we propose a novel strategy to renormalize complex networks. Rather than resorting to handling the bare structure of a network, we overlay it with a readily renormalizable physical model, which reflects real-world scenarios with a broad generality. From the renormalization of the overlying system, we extract a rigorous and simple renormalization group transformation of arbitrary networks. In this way, we obtain a transparent, model-dependent physical meaning of the network renormalization, which in our case is a scale transformation preserving the transition dynamics of low-density particles. We define the strength of a node in accordance with the physical model and trace the change of its distribution under our renormalization process. This analysis demonstrates that the strength distributions of scale-free networks remain scale-invariant, whereas those of homogeneous random networks do not.

Similar papers 1