March 29, 2024
Non-Abelian topological orders offer an intriguing path towards fault-tolerant quantum computation, where information can be encoded and manipulated in a topologically protected manner immune to arbitrary local noises and perturbations. However, realizing non-Abelian topologically ordered states is notoriously challenging in both condensed matter and programmable quantum systems, and it was not until recently that signatures of non-Abelian statistics were observed through digital quantum simulation approaches. Despite these exciting progresses, none of them has demonstrated the appropriate type of topological orders and associated non-Abelian anyons whose braidings alone support universal quantum computation. Here, we report the realization of non-Abelian topologically ordered states of the Fibonacci string-net model and demonstrate braidings of Fibonacci anyons featuring universal computational power, with a superconducting quantum processor. We exploit efficient quantum circuits to prepare the desired states and verify their nontrivial topological nature by measuring the topological entanglement entropy. In addition, we create two pairs of Fibonacci anyons and demonstrate their fusion rule and non-Abelian braiding statistics by applying unitary gates on the underlying physical qubits. Our results establish a versatile digital approach to exploring exotic non-Abelian topological states and their associated braiding statistics with current noisy intermediate-scale quantum processors.
Similar papers 1
June 18, 2024
Fibonacci string-net condensate, a complex topological state that supports non-Abelian anyon excitations, holds promise for fault-tolerant universal quantum computation. However, its realization by a static-lattice Hamiltonian has remained elusive due to the inherent high-order interactions demanded. Here, we introduce a scalable dynamical string-net preparation (DSNP) approach, suitable even for near-term quantum processors, that can dynamically prepare the state through rec...
October 5, 2021
Finding physical realizations of topologically ordered states in experimental settings, from condensed matter to artificial quantum systems, has been the main challenge en route to utilizing their unconventional properties. We show how to realize a large class of topologically ordered states and simulate their quasiparticle excitations on a digital quantum computer. To achieve this we design a set of linear-depth quantum circuits to generate ground states of general string-ne...
July 31, 2024
The Fibonacci topological order is the prime candidate for the realization of universal topological quantum computation. We devise minimal quantum circuits to demonstrate the non-Abelian nature of the doubled Fibonacci topological order, as realized in the Levin-Wen string net model. Our circuits effectively initialize the ground state, create excitations, twist and braid them, all in the smallest lattices possible. We further design methods to determine the fusion amplitudes...
November 17, 2022
Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding ...
October 19, 2022
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change th...
February 17, 2018
Topological quantum computers promise a fault tolerant means to perform quantum computation. Topological quantum computers use particles with exotic exchange statistics called non-Abelian anyons, and the simplest anyon model which allows for universal quantum computation by particle exchange or braiding alone is the Fibonacci anyon model. One classically hard problem that can be solved efficiently using quantum computation is finding the value of the Jones polynomial of knots...
July 16, 2013
Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here we establish a similar correspondence between the Z_3 R...
July 12, 2007
Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topol...
March 29, 2022
Topological quantum computers provide a fault-tolerant method for performing quantum computation. Topological quantum computers manipulate topological defects with exotic exchange statistics called anyons. The simplest anyon model for universal topological quantum computation is the Fibonacci anyon model, which is a non-abelian anyon system. In non-abelian anyon systems, exchanging anyons always results a unitary operations instead of a simple phase changing in abelian anyon ...
June 2, 2012
A topological quantum computer should allow intrinsically fault-tolerant quantum computation, but there remains uncertainty about how such a computer can be implemented. It is known that topological quantum computation can be implemented with limited quasiparticle braiding capabilities, in fact using only a single mobile quasiparticle, if the system can be properly initialized by measurements. It is also known that measurements alone suffice without any braiding, provided tha...