July 9, 2024
Similar papers 2
November 25, 2022
In the wake of the growing popularity of machine learning in particle physics, this work finds a new application of geometric deep learning on Feynman diagrams to make accurate and fast matrix element predictions with the potential to be used in analysis of quantum field theory. This research uses the graph attention layer which makes matrix element predictions to 1 significant figure accuracy above 90% of the time. Peak performance was achieved in making predictions to 3 sig...
March 8, 2018
Graphs are fundamental data structures which concisely capture the relational structure in many important real-world domains, such as knowledge graphs, physical and social interactions, language, and chemistry. Here we introduce a powerful new approach for learning generative models over graphs, which can capture both their structure and attributes. Our approach uses graph neural networks to express probabilistic dependencies among a graph's nodes and edges, and can, in princ...
June 4, 2018
Understanding and interacting with everyday physical scenes requires rich knowledge about the structure of the world, represented either implicitly in a value or policy function, or explicitly in a transition model. Here we introduce a new class of learnable models--based on graph networks--which implement an inductive bias for object- and relation-centric representations of complex, dynamical systems. Our results show that as a forward model, our approach supports accurate p...
April 3, 2024
This article attempts to summarize the effort by the particle physics community in addressing the tedious work of determining the parameter spaces of beyond-the-standard-model (BSM) scenarios, allowed by data. These spaces, typically associated with a large number of dimensions, especially in the presence of nuisance parameters, suffer from the curse of dimensionality and thus render naive sampling of any kind -- even the computationally inexpensive ones -- ineffective. Over ...
January 21, 2024
Theoretical physicists describe nature by i) building a theory model and ii) determining the model parameters. The latter step involves the dual aspect of both fitting to the existing experimental data and satisfying abstract criteria like beauty, naturalness, etc. We use the Yukawa quark sector as a toy example to demonstrate how both of those tasks can be accomplished with machine learning techniques. We propose loss functions whose minimization results in true models that ...
August 25, 2019
Aiming at a comprehensive and concise tutorial survey, recap of variational inference and reinforcement learning with Probabilistic Graphical Models are given with detailed derivations. Reviews and comparisons on recent advances in deep reinforcement learning are made from various aspects. We offer detailed derivations to a taxonomy of Probabilistic Graphical Model and Variational Inference methods in deep reinforcement learning, which serves as a complementary material on to...
May 26, 2024
The precise measurement of the top-Higgs coupling is crucial in particle physics, offering insights into potential new physics Beyond the Standard Model (BSM) carrying CP Violation (CPV) effects. In this paper, we explore the CP properties of a Higgs boson coupling with a top quark pair, focusing on events where the Higgs state decays into a pair of $b$-quarks and the top-antitop system decays leptonically. The novelty of our analysis resides in the exploitation of two condit...
May 20, 2023
We describe a set of novel methods for efficiently sampling high-dimensional parameter spaces of physical theories defined at high energies, but constrained by experimental measurements made at lower energies. Often, theoretical models such as supersymmetry are defined by many parameters, $\mathcal{O}(10-100)$, expressed at high energies, while relevant experimental constraints are often defined at much lower energies, preventing them from directly ruling out portions of the ...
July 31, 2020
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) follow no absolute order, and it is hard for traditional machine learning (ML) algorithms to recognize a pattern and generalize their predictions on this type of data. Graph Neural Networks (GNN) successfully tackled this problem. ...
June 17, 2021
We present an approach for maximizing a global utility function by learning how to allocate resources in an unsupervised way. We expect interactions between allocation targets to be important and therefore propose to learn the reward structure for near-optimal allocation policies with a GNN. By relaxing the resource constraint, we can employ gradient-based optimization in contrast to more standard evolutionary algorithms. Our algorithm is motivated by a problem in modern astr...