September 23, 2024
Similar papers 2
March 31, 2024
Non-Euclidean data is frequently encountered across different fields, yet there is limited literature that addresses the fundamental challenge of training neural networks with manifold representations as outputs. We introduce the trick named Deep Extrinsic Manifold Representation (DEMR) for visual tasks in this context. DEMR incorporates extrinsic manifold embedding into deep neural networks, which helps generate manifold representations. The DEMR approach does not directly o...
January 26, 2015
Feature descriptors play a crucial role in a wide range of geometry analysis and processing applications, including shape correspondence, retrieval, and segmentation. In this paper, we introduce Geodesic Convolutional Neural Networks (GCNN), a generalization of the convolutional networks (CNN) paradigm to non-Euclidean manifolds. Our construction is based on a local geodesic system of polar coordinates to extract "patches", which are then passed through a cascade of filters a...
July 19, 2024
The application of Riemannian geometry in the decoding of brain-computer interfaces (BCIs) has swiftly garnered attention because of its straightforwardness, precision, and resilience, along with its aptitude for transfer learning, which has been demonstrated through significant achievements in global BCI competitions. This paper presents a comprehensive review of recent advancements in the integration of deep learning with Riemannian geometry to enhance EEG signal decoding i...
October 28, 2020
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data. In this paper, we propose a deep manifold learning framework, called deep manifold transformation (DMT) for unsupervised NLDR and embedding learning. DMT enhances deep neural networks by using cross-layer local geometry-preservi...
February 20, 2020
Representing graphs as sets of node embeddings in certain curved Riemannian manifolds has recently gained momentum in machine learning due to their desirable geometric inductive biases, e.g., hierarchical structures benefit from hyperbolic geometry. However, going beyond embedding spaces of constant sectional curvature, while potentially more representationally powerful, proves to be challenging as one can easily lose the appeal of computationally tractable tools such as geod...
June 15, 2020
We propose a novel framework, called Markov-Lipschitz deep learning (MLDL), to tackle geometric deterioration caused by collapse, twisting, or crossing in vector-based neural network transformations for manifold-based representation learning and manifold data generation. A prior constraint, called locally isometric smoothness (LIS), is imposed across-layers and encoded into a Markov random field (MRF)-Gibbs distribution. This leads to the best possible solutions for local geo...
March 5, 2023
A novel method, named Curvature-Augmented Manifold Embedding and Learning (CAMEL), is proposed for high dimensional data classification, dimension reduction, and visualization. CAMEL utilizes a topology metric defined on the Riemannian manifold, and a unique Riemannian metric for both distance and curvature to enhance its expressibility. The method also employs a smooth partition of unity operator on the Riemannian manifold to convert localized orthogonal projection to global...
May 19, 2018
Given data, deep generative models, such as variational autoencoders (VAE) and generative adversarial networks (GAN), train a lower dimensional latent representation of the data space. The linear Euclidean geometry of data space pulls back to a nonlinear Riemannian geometry on the latent space. The latent space thus provides a low-dimensional nonlinear representation of data and classical linear statistical techniques are no longer applicable. In this paper we show how statis...
March 17, 2022
Faithful visualizations of data residing on manifolds must take the underlying geometry into account when producing a flat planar view of the data. In this paper, we extend the classic stochastic neighbor embedding (SNE) algorithm to data on general Riemannian manifolds. We replace standard Gaussian assumptions with Riemannian diffusion counterparts and propose an efficient approximation that only requires access to calculations of Riemannian distances and volumes. We demonst...
March 2, 2020
Geometric deep learning has attracted significant attention in recent years, in part due to the availability of exotic data types for which traditional neural network architectures are not well suited. Our goal in this paper is to generalize convolutional neural networks (CNN) to the manifold-valued image case which arises commonly in medical imaging and computer vision applications. Explicitly, the input data to the network is an image where each pixel value is a sample from...