October 3, 2024
The rising interest in leveraging higher-order interactions present in complex systems has led to a surge in more expressive models exploiting high-order structures in the data, especially in topological deep learning (TDL), which designs neural networks on high-order domains such as simplicial complexes. However, progress in this field is hindered by the scarcity of datasets for benchmarking these architectures. To address this gap, we introduce MANTRA, the first large-scale, diverse, and intrinsically high order dataset for benchmarking high-order models, comprising over 43,000 and 249,000 triangulations of surfaces and three-dimensional manifolds, respectively. With MANTRA, we assess several graph- and simplicial complex-based models on three topological classification tasks. We demonstrate that while simplicial complex-based neural networks generally outperform their graph-based counterparts in capturing simple topological invariants, they also struggle, suggesting a rethink of TDL. Thus, MANTRA serves as a benchmark for assessing and advancing topological methods, leading the way for more effective high-order models.
Similar papers 1
November 24, 2016
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learni...
September 8, 2024
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were...
September 29, 2023
This research uses deep learning to estimate the topology of manifolds represented by sparse, unordered point cloud scenes in 3D. A new labelled dataset was synthesised to train neural networks and evaluate their ability to estimate the genus of these manifolds. This data used random homeomorphic deformations to provoke the learning of visual topological features. We demonstrate that deep learning models could extract these features and discuss some advantages over existing t...
June 1, 2022
Topological deep learning is a rapidly growing field that pertains to the development of deep learning models for data supported on topological domains such as simplicial complexes, cell complexes, and hypergraphs, which generalize many domains encountered in scientific computations. In this paper, we present a unifying deep learning framework built upon a richer data structure that includes widely adopted topological domains. Specifically, we first introduce combinatorial ...
December 19, 2023
Due to their ability to model meaningful higher order relations among a set of entities, higher order network models have emerged recently as a powerful alternative for graph-based network models which are only capable of modeling binary relationships. Message passing paradigm is still dominantly used to learn representations even for higher order network models. While powerful, message passing can have disadvantages during inference, particularly when the higher order connec...
February 14, 2024
Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each p...
October 1, 2022
Geometric deep learning has gained much attention in recent years due to more available data acquired from non-Euclidean domains. Some examples include point clouds for 3D models and wireless sensor networks in communications. Graphs are common models to connect these discrete data points and capture the underlying geometric structure. With the large amount of these geometric data, graphs with arbitrarily large size tend to converge to a limit model -- the manifold. Deep neur...
February 28, 2025
Recently, topological deep learning (TDL), which integrates algebraic topology with deep neural networks, has achieved tremendous success in processing point-cloud data, emerging as a promising paradigm in data science. However, TDL has not been developed for data on differentiable manifolds, including images, due to the challenges posed by differential topology. We address this challenge by introducing manifold topological deep learning (MTDL) for the first time. To highligh...
September 20, 2024
Understanding the topological characteristics of data is important to many areas of research. Recent work has demonstrated that synthetic 4D image-type data can be useful to train 4D convolutional neural network models to see topological features in these data. These models also appear to tolerate the use of image preprocessing techniques where existing topological data analysis techniques such as persistent homology do not. This paper investigates how methods from algebraic ...
June 18, 2022
This paper presents the computational challenge on differential geometry and topology that was hosted within the ICLR 2022 workshop ``Geometric and Topological Representation Learning". The competition asked participants to provide implementations of machine learning algorithms on manifolds that would respect the API of the open-source software Geomstats (manifold part) and Scikit-Learn (machine learning part) or PyTorch. The challenge attracted seven teams in its two month d...