November 19, 2024
Similar papers 2
July 17, 2015
With the discovery of the Higgs boson the Standard Model has become a complete and comprehensive theory, which has been verified with unparalleled precision and in principle might be valid at all scales. However, several reasons remain why we firmly believe that there should be physics beyond the Standard Model. Experiments such as the LHC, new $B$ factories, and earth- and space-based astro-particle experiments provide us with unique opportunities to discover a coherent fram...
December 27, 2007
Following the unexpected theoretical discovery of a mass dimension one fermionic quantum field of spin one half, we now present first results on two _local_ versions. The Dirac and Majorana fields of the standard model of particle physics are supplemented by their natural counterparts in the dark matter sector. The possibility that a mass dimension transmuting symmetry may underlie a new standard model of particle physics is briefly suggested.
April 21, 2001
Modern particle physics and cosmology support the idea that a background of invisible material pervades the whole universe, and identify in the cosmic vacuum the ultimate source of matter-energy, both seen and unseen. Within the framework of the theory of fundamental relativistic membranes, we suggest a self-consistent, vacuum energy-driven mechanism for dark matter creation through gauge symmetry rearrangement.
January 13, 2020
Tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavour physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral ...
April 9, 2020
We propose an extension to the Standard Model accommodating two families of Dirac neutral fermions and Majorana fermions under additional ${U(1)_{e-\mu} \times Z_3\times Z_2}$ symmetries where ${U(1)_{e-\mu}}$ is a flavor dependent gauge symmetry related to the first and second family of the lepton sector, which features a two-loop induced neutrino mass model. The two families are favored by minimally reproducing the current neutrino oscillation data and two mass difference s...
September 5, 2013
We suggest a minimal extension of the standard model, which can explain current experimental data of the dark matter, small neutrino masses and baryon asymmetry of the universe, inflation, and dark energy, and achieve gauge coupling unification. The gauge coupling unification can explain the charge quantization, and be realized by introducing six new fields. We investigate the vacuum stability, coupling perturbativity, and correct dark matter abundance in this model by use of...
July 29, 2021
The understanding of the physical processes that lead to the origin of matter in the early Universe, creating both an excess of matter over anti-matter that survived until the present and a dark matter component, is one of the most fascinating challenges in modern science. The problem cannot be addressed within our current description of fundamental physics and, therefore, it currently provides a very strong evidence of new physics. Solutions can either reside in a modificati...
May 22, 2016
In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this make...
September 11, 2002
As indicated by Einstein's general relativity, matter and geometry are two faces of a single nature. In our point of view, extra dimensions, as a member of the {\em geometry face}, will be treated as a part of the {\em matter face} when they are beyond our poor vision, thereby providing dark energy sources effectively. The geometrical structure and the evolution pattern of extra dimensions therefore may play an important role in cosmology. Various possible impacts of extra di...
May 10, 2019
A simple model of dark matter contains a light Dirac field charged under a hidden U(1) gauge symmetry. When a chiral matter content in a strong dynamics satisfies the t'Hooft anomaly matching condition, a massless baryon is a natural candidate of the light Dirac field. One realization is the same matter content as the standard SU(5)$\times$U(1)$_{(B-L)}$ grand unified theory. We propose a chiral [SU(5)$\times$U(1)]$^4$ gauge theory as a unified model of the SM and DM sectors....