December 16, 2024
Similar papers 3
September 16, 2019
We discuss symmetry fractionalization of the Lorentz group in (2+1)$d$ non-spin quantum field theory (QFT), and its implications for dualities. We prove that two inequivalent non-spin QFTs are dual as spin QFTs if and only if they are related by a Lorentz symmetry fractionalization with respect to an anomalous $\mathbb{Z}_2$ one-form symmetry. Moreover, if the framing anomalies of two non-spin QFTs differ by a multiple of 8, then they are dual as spin QFTs if and only if they...
December 11, 2011
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a ...
March 27, 2024
It is common in condensed matter systems for reflection ($R$) and time-reversal ($T$) symmetry to both be broken while the combination $RT$ is preserved. In this paper we study invariants that arise due to $RT$ symmetry. We consider many-body systems of interacting fermions with fermionic symmetry groups $G_f = \mathbb{Z}_2^f \times \mathbb{Z}_2^{RT}$, $U(1)^f \rtimes \mathbb{Z}_2^{RT}$, and $U(1)^f \times \mathbb{Z}_2^{RT}$. We show that (2+1)D invertible fermionic topologic...
July 6, 2020
We present in Part II the description of the internal degrees of freedom of fermions by the superposition of odd products of the Clifford algebra elements, either $\gamma^a$'s or $\tilde{\gamma}^a$'s, which determine with their oddness the anticommuting properties of the creation and annihilation operators of the second quantized fermion fields in even $d$-dimensional space-time, as we do in Part I of this paper by the Grassmann algebra elements $\theta^a$'s and $\frac{\parti...
May 16, 2006
This review is a summary of my work (partially in collaboration with Kurt Schoenhammer) on higher-dimensional bosonization during the years 1994-1996. It has been published as a book entitled "Bosonization of interacting fermions in arbitrary dimensions" by Springer Verlag (Lecture Notes in Physics m48, Springer, Berlin, 1997). I have NOT revised this review, so that there is no reference to the literature after 1996. However, the basic ideas underlying the functional bosoniz...
April 30, 2014
Dedicated to Ludwig Faddeev on his 80th birthday. Ludwig exemplifies perfectly a mathematical physicist: significant contribution to mathematics (algebraic properties of integrable systems) and physics (quantum field theory). In this note I present an exercise which bridges mathematics (restricted Clifford algebra) to physics (Majorana fermions).
October 7, 2022
In the review article in Progress in Particle and Nuclear Physics (vol.121(2021) 103890)) the authors present the achievements so far of the spin-charge-family theory, which offers the explanation for all the so far observed properties of elementary fermion and boson fields, if the space-time is higher than d=(3+1), it must be $d\ge (13+1)$. Fermions interact with gravity only. Ref. PPNP (vol.121(2021) 103890)) presents, in addition to a rather detailed review of all the achi...
February 9, 2005
It is a well known feature of odd space-time dimensions $d$ that there exist two inequivalent fundamental representations $A$ and $B$ of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in $A$ and $B$. As a consequence, a parity invariant Lagrangian can only be constructed by incorporating both the representations. Based upon these ideas and contrary to long held belief, we show that in addition to a discrete exchange symmetry for ...
June 12, 2020
Usually, a left-moving fermion in d=1+1 dimensions reflects off a boundary to become a right-moving fermion. This means that, while overall fermion parity $(-1)^F$ is conserved, chiral fermion parity for left- and right-movers individually is not. Remarkably, there are boundary conditions that do preserve chiral fermion parity, but only when the number of Majorana fermions is a multiple of 8. In this paper we classify all such boundary states for $2N$ Majorana fermions when a...
November 20, 2014
Starting from a Unified Field Theory (UFT) proposed previously by the author, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P (G,M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry ...