December 30, 2024
Anyons are low-dimensional quasiparticles that obey fractional statistics, hence interpolating between bosons and fermions. In two dimensions, they exist as elementary excitations of fractional quantum Hall states and they are believed to enable topological quantum computing. One-dimensional (1D) anyons have been theoretically proposed, but their experimental realization has proven to be difficult. Here, we observe anyonic correlations, which emerge through the phenomenon of spin-charge separation, in a 1D strongly-interacting quantum gas. The required spin degree of freedom is provided by a mobile impurity, whose effective anyonic correlations are associated with an experimentally tunable statistical angle. These anyonic correlations are measured by monitoring the impurity momentum distribution, whose asymmetric feature demonstrates the transmutation of bosons via anyons to fermions. Going beyond equilibrium conditions, we study the dynamical properties of the anyonic correlations via dynamical fermionization of the anyons. Our work opens up the door to the exploration of non-equilibrium anyonic phenomena in a highly controllable setting.
Similar papers 1
April 8, 2021
We present an exact scheme of bosonization for anyons (including fermions) in the two-dimensional manifold of the quantum Hall fluid. This gives every fractional quantum Hall phase of the electrons one or more dual bosonic descriptions. For interacting electrons, the statistical transmutation from anyons to bosons allows us to explicitly derive the microscopic statistical interaction between the anyons, in the form of the effective two-body and few-body interactions. This als...
October 5, 2022
The quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter $\theta$. $\theta = 0, \pi$ correspond to bosons and fermions respectively; at intermediate values we say that we have fractional statistics. In two dimensions, $\theta$ describes the phase...
December 17, 2019
One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A clo...
September 10, 2010
Anyons - particles carrying fractional statistics that interpolate between bosons and fermions - have been conjectured to exist in low dimensional systems. In the context of the fractional quantum Hall effect (FQHE), quasi-particles made of electrons take the role of anyons whose statistical exchange phase is fixed by the filling factor. Here we propose an experimental setup to create anyons in one-dimensional lattices with fully tuneable exchange statistics. In our setup, an...
April 6, 2020
We study the quantum dynamics of massive impurities embedded in a strongly interacting two-dimensional atomic gas driven into the fractional quantum Hall (FQH) regime under the effect of a synthetic magnetic field. For suitable values of the atom-impurity interaction strength, each impurity can capture one or more quasi-hole excitations of the FQH liquid, forming a bound molecular state with novel physical properties. An effective Hamiltonian for such anyonic molecules is der...
October 29, 2024
We establish an exact mapping between identical particles in one dimension with arbitrary exchange statistics, including bosons, anyons and fermions, provided they share the same scattering length. This boson-anyon-fermion mapping facilitates the construction of anyons from a linear superposition of spatially symmetric and anti-symmetric states. We demonstrate this in a spin-1/2 Fermi gas with coexistent s- and p-wave interactions, where both types of bound states can be supp...
January 11, 2024
Anyons are exotic low-dimensional quasiparticles whose unconventional quantum statistics extends the binary particle division into fermions and bosons. The fractional quantum Hall regime provides a natural host, with first convincing anyon signatures recently observed through interferometry and cross-correlations of colliding beams. However, the fractional regime is rife with experimental complications, such as an anomalous tunneling density of states, which impede the manipu...
September 7, 2018
We study the non-equilibrium dynamics of Abelian anyons in a one-dimensional system. We find that the interplay of anyonic statistics and interactions gives rise to spatially asymmetric particle transport together with a novel dynamical symmetry that depends on the anyonic statistical angle and the sign of interactions. Moreover, we show that anyonic statistics induces asymmetric spreading of quantum information, characterized by asymmetric light cones of out-of-time-ordered ...
June 2, 2023
Low-dimensional quantum systems can host anyons, particles with exchange statistics that are neither bosonic nor fermionic. Despite indications of a wealth of exotic phenomena, the physics of anyons in one dimension (1D) remains largely unexplored. Here, we realize Abelian anyons in 1D with arbitrary exchange statistics using ultracold atoms in an optical lattice, where we engineer the statistical phase via a density-dependent Peierls phase. We explore the dynamical behavior ...
November 29, 2007
The dichotomy between fermions and bosons is at the root of many physical phenomena, from metallic conduction of electricity to super-fluidity, and from the periodic table to coherent propagation of light. The dichotomy originates from the symmetry of the quantum mechanical wave function to the interchange of two identical particles. In systems that are confined to two spatial dimensions particles that are neither fermions nor bosons, coined "anyons", may exist. The fractiona...