January 4, 2025
Similar papers 5
June 6, 2022
Machine learning has achieved dramatic success over the past decade, with applications ranging from face recognition to natural language processing. Meanwhile, rapid progress has been made in the field of quantum computation including developing both powerful quantum algorithms and advanced quantum devices. The interplay between machine learning and quantum physics holds the intriguing potential for bringing practical applications to the modern society. Here, we focus on quan...
May 27, 2024
We introduce several novel probabilistic quantum algorithms that overcome the normal unitary restrictions in quantum machine learning by leveraging the Linear Combination of Unitaries (LCU) method. Among our contributions are quantum native implementations of Residual Networks (ResNet); demonstrating a path to avoiding barren plateaus while maintaining the complexity of models that are hard to simulate classically. Furthermore, by generalising to allow control of the strength...
August 19, 2021
While quantum architectures are still under development, when available, they will only be able to process quantum data when machine learning algorithms can only process numerical data. Therefore, in the issues of classification or regression, it is necessary to simulate and study quantum systems that will transfer the numerical input data to a quantum form and enable quantum computers to use the available methods of machine learning. This material includes the results of exp...
February 7, 2025
Machine learning is widely believed to be one of the most promising practical applications of quantum computing. Existing quantum machine learning schemes typically employ a quantum-classical hybrid approach that relies crucially on gradients of model parameters. Such an approach lacks provable convergence to global minima and will become infeasible as quantum learning models scale up. Here, we introduce quantum automated learning, where no variational parameter is involved a...
March 31, 2021
Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantum optimisation algorithms to find optimal parameters of QNNs for certain tasks. To achieve this, we coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network para...
November 23, 2022
This paper presents, via an explicit example with a real-world dataset, a hands-on introduction to the field of quantum machine learning (QML). We focus on the case of learning with a single qubit, using data re-uploading techniques. After a discussion of the relevant background in quantum computing and machine learning we provide a thorough explanation of the data re-uploading models that we consider, and implement the different proposed formulations in toy and real-world da...
December 10, 2014
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. At the same time, algorithms for quantum computers have been shown to efficiently solve some problems that are intractable on conventional, classical computers. We show that quantum computing not only reduces the time required to train a deep restricted Boltzmann machine, but also provides a richer and more comprehensive framework for deep learning than classical computin...
May 6, 2022
The data representation in a machine-learning model strongly influences its performance. This becomes even more important for quantum machine learning models implemented on noisy intermediate scale quantum (NISQ) devices. Encoding high dimensional data into a quantum circuit for a NISQ device without any loss of information is not trivial and brings a lot of challenges. While simple encoding schemes (like single qubit rotational gates to encode high dimensional data) often le...
August 30, 2023
Image classification is a fundamental computer vision problem, and neural networks offer efficient solutions. With advancing quantum technology, quantum neural networks have gained attention. However, they work only for low-dimensional data and demand dimensionality reduction and quantum encoding. Two recent image classification methods have emerged: one employs PCA dimensionality reduction and angle encoding, the other integrates QNNs into CNNs to boost performance. Despite ...
March 3, 2025
It remains unclear whether quantum machine learning (QML) has real advantages when dealing with practical and meaningful tasks. Encoding classical data into quantum states is one of the key steps in QML. Amplitude encoding has been widely used owing to its remarkable efficiency in encoding a number of $2^{n}$ classical data into $n$ qubits simultaneously. However, the theoretical impact of amplitude encoding on QML has not been thoroughly investigated. In this work we prove t...