February 3, 2025
Similar papers 4
September 14, 2014
In this technical report we presented a novel approach to machine learning. Once the new framework is presented, we will provide a simple and yet very powerful learning algorithm which will be benchmark on various dataset. The framework we proposed is based on booleen circuits; more specifically the classifier produced by our algorithm have that form. Using bits and boolean gates instead of real numbers and multiplication enable the the learning algorithm and classifier to ...
November 11, 2021
This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of int...
December 27, 2023
In this paper, we investigate the expressivity and approximation properties of deep neural networks employing the ReLU$^k$ activation function for $k \geq 2$. Although deep ReLU networks can approximate polynomials effectively, deep ReLU$^k$ networks have the capability to represent higher-degree polynomials precisely. Our initial contribution is a comprehensive, constructive proof for polynomial representation using deep ReLU$^k$ networks. This allows us to establish an uppe...
February 18, 2020
In recent years we see a rapidly growing line of research which shows learnability of various models via common neural network algorithms. Yet, besides a very few outliers, these results show learnability of models that can be learned using linear methods. Namely, such results show that learning neural-networks with gradient-descent is competitive with learning a linear classifier on top of a data-independent representation of the examples. This leaves much to be desired, as ...
September 5, 2016
Although neural networks are routinely and successfully trained in practice using simple gradient-based methods, most existing theoretical results are negative, showing that learning such networks is difficult, in a worst-case sense over all data distributions. In this paper, we take a more nuanced view, and consider whether specific assumptions on the "niceness" of the input distribution, or "niceness" of the target function (e.g. in terms of smoothness, non-degeneracy, inco...
February 8, 2014
We study the complexity of functions computable by deep feedforward neural networks with piecewise linear activations in terms of the symmetries and the number of linear regions that they have. Deep networks are able to sequentially map portions of each layer's input-space to the same output. In this way, deep models compute functions that react equally to complicated patterns of different inputs. The compositional structure of these functions enables them to re-use pieces of...
December 17, 2024
We study neural network training (NNT): optimizing a neural network's parameters to minimize the training loss over a given dataset. NNT has been studied extensively under theoretic lenses, mainly on two-layer networks with linear or ReLU activation functions where the parameters can take any real value (here referred to as continuous NNT (C-NNT)). However, less is known about deeper neural networks, which exhibit substantially stronger capabilities in practice. In addition, ...
October 8, 2024
The Boolean Nearest Neighbor (BNN) representation of Boolean functions was recently introduced by Hajnal, Liu and Turan. A BNN representation of $f$ is a pair $(P,N)$ of sets of Boolean vectors (called positive and negative prototypes) where $f(x)=1$ for every positive prototype $x \in P$, $f(x)=0$ for all every negative prototype $x \in N$, and the value $f(x)$ for $x \not\in P \cup N$ is determined by the type of the closest prototype. The main aim of this paper is to deter...
October 17, 2023
The remarkable success of deep neural networks (DNN) is often attributed to their high expressive power and their ability to approximate functions of arbitrary complexity. Indeed, DNNs are highly non-linear models, and activation functions introduced into them are largely responsible for this. While many works studied the expressive power of DNNs through the lens of their approximation capabilities, quantifying the non-linearity of DNNs or of individual activation functions r...
November 15, 2021
In this article we present new results on neural networks with linear threshold activation functions. We precisely characterize the class of functions that are representable by such neural networks and show that 2 hidden layers are necessary and sufficient to represent any function representable in the class. This is a surprising result in the light of recent exact representability investigations for neural networks using other popular activation functions like rectified line...