December 23, 2021
Community detection and hierarchy extraction are usually thought of as separate inference tasks on networks. Considering only one of the two when studying real-world data can be an oversimplification. In this work, we present a generative model based on an interplay between community and hierarchical structures. It assumes that each node has a preference in the interaction mechanism and nodes with the same preference are more likely to interact, while heterogeneous interactio...
July 25, 2023
We present a physics-inspired method for inferring dynamic rankings in directed temporal networks - networks in which each directed and timestamped edge reflects the outcome and timing of a pairwise interaction. The inferred ranking of each node is real-valued and varies in time as each new edge, encoding an outcome like a win or loss, raises or lowers the node's estimated strength or prestige, as is often observed in real scenarios including sequences of games, tournaments, ...
November 24, 2010
We continue the line of research on graph compression started with WebGraph, but we move our focus to the compression of social networks in a proper sense (e.g., LiveJournal): the approaches that have been used for a long time to compress web graphs rely on a specific ordering of the nodes (lexicographical URL ordering) whose extension to general social networks is not trivial. In this paper, we propose a solution that mixes clusterings and orders, and devise a new algorithm,...
November 28, 2019
The goal of the ranking problem in networks is to rank nodes from best to worst, according to a chosen criterion. In this work, we focus on ranking the nodes according to their quality. The problem of ranking the nodes in bipartite networks is valuable for many real-world applications. For instance, high-quality products can be promoted on an online shop or highly reputed restaurants attract more people on venues review platforms. However, many classical ranking algorithms sh...
October 18, 2018
In this article we propose a novel ranking algorithm, referred to as HierLPR, for the multi-label classification problem when the candidate labels follow a known hierarchical structure. HierLPR is motivated by a new metric called eAUC that we design to assess the ranking of classification decisions. This metric, associated with the hit curve and local precision rate, emphasizes the accuracy of the first calls. We show that HierLPR optimizes eAUC under the tree constraint and ...
February 13, 2014
The most commonly used method to tackle the graph partitioning problem in practice is the multilevel approach. During a coarsening phase, a multilevel graph partitioning algorithm reduces the graph size by iteratively contracting nodes and edges until the graph is small enough to be partitioned by some other algorithm. A partition of the input graph is then constructed by successively transferring the solution to the next finer graph and applying a local search algorithm to i...
December 10, 2021
Given a massive graph, how can we exploit its hierarchical structure for concisely but exactly summarizing the graph? By exploiting the structure, can we achieve better compression rates than state-of-the-art graph summarization methods? The explosive proliferation of the Web has accelerated the emergence of large graphs, such as online social networks and hyperlink networks. Consequently, graph compression has become increasingly important to process such large graphs with...
June 11, 2012
Link directions are essential to the functionality of networks and their prediction is helpful towards a better knowledge of directed networks from incomplete real-world data. We study the problem of predicting the directions of some links by using the existence and directions of the rest of links. We propose a solution by first ranking nodes in a specific order and then predicting each link as stemming from a lower-ranked node towards a higher-ranked one. The proposed rankin...
December 20, 2018
Humans are social by nature. Throughout history, people have formed communities and built relationships. Most relationships with coworkers, friends, and family are developed during face-to-face interactions. These relationships are established through explicit means of communications such as words and implicit such as intonation, body language, etc. By analyzing human interactions we can derive information about the relationships and influence among conversation participants....
June 5, 2018
We present a novel hierarchical graph clustering algorithm inspired by modularity-based clustering techniques. The algorithm is agglomerative and based on a simple distance between clusters induced by the probability of sampling node pairs. We prove that this distance is reducible, which enables the use of the nearest-neighbor chain to speed up the agglomeration. The output of the algorithm is a regular dendrogram, which reveals the multi-scale structure of the graph. The res...