February 4, 2025
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
Similar papers 1
February 5, 2025
Memory retention mechanisms play a central role in determining the efficiency of computational architectures designed for processing extended sequences. Conventional methods for token management often impose fixed retention thresholds or rely on uniform attention weight distributions, leading to inefficient memory utilization and premature information loss in extended sequence modeling. Structured Token Retention (STR) introduces a probabilistic selection framework that dynam...
January 29, 2025
Extended sequence generation often leads to degradation in contextual consistency due to the inability of conventional self-attention mechanisms to effectively retain long-range dependencies. Existing approaches, including memory compression and retrieval-augmented conditioning, introduce computational trade-offs that either increase inference latency or impose additional storage overhead. Structured Context Recomposition (SCR) introduces a probabilistic layer realignment str...
February 1, 2025
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths u...
February 21, 2025
Memory plays a key role in enhancing LLMs' performance when deployed to real-world applications. Existing solutions face trade-offs: explicit memory designs based on external storage require complex management and incur storage overhead, while implicit memory designs that store information via parameters struggle with reliable retrieval. In this paper, we propose R$^3$Mem, a memory network that optimizes both information Retention and Retrieval through Reversible context comp...
April 17, 2024
While current large language models (LLMs) demonstrate some capabilities in knowledge-intensive tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with infrequent knowledge and temporal degradation. In addition, the uninterpretable nature of parametric memorization makes it challenging to understand and prevent hallucination. Parametric memory pools and model editing are only partial solutions. Retrieval Augment...
August 30, 2024
Recent advancements in Large Language Models (LLMs) have yielded remarkable success across diverse fields. However, handling long contexts remains a significant challenge for LLMs due to the quadratic time and space complexity of attention mechanisms and the growing memory consumption of the key-value cache during generation. This work introduces MemLong: Memory-Augmented Retrieval for Long Text Generation, a method designed to enhance the capabilities of long-context languag...
January 23, 2025
Transformative innovations in model architectures have introduced hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures, offering enhanced adaptability to complex linguistic inputs. Autonomous structural memory manipulation further advances this paradigm through dynamic memory reallocation mechanisms that prioritize critical contextual features while suppressing less relevant information, enabling scala...
January 29, 2025
Context-aware processing mechanisms have increasingly become a critical area of exploration for improving the semantic and contextual capabilities of language generation models. The Context-Aware Semantic Recomposition Mechanism (CASRM) was introduced as a novel framework designed to address limitations in coherence, contextual adaptability, and error propagation in large-scale text generation tasks. Through the integration of dynamically generated context vectors and attenti...
December 25, 2024
Long-range tasks require reasoning over long inputs. Existing solutions either need large compute budgets, training data, access to model weights, or use complex, task-specific approaches. We present PRISM, which alleviates these concerns by processing information as a stream of chunks, maintaining a structured in-context memory specified by a typed hierarchy schema. This approach demonstrates superior performance to baselines on diverse tasks while using at least 4x smaller ...
August 6, 2024
In this paper, we investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks. Through an analysis of LLMs' internal factual recall at each reasoning step via Knowledge Neurons, we reveal that LLMs fail to harness the critical factual associations under certain circumstances. Instead, they tend to opt for alternative, shortcut-like pathways to answer reasoning questions. By manua...