February 28, 2025
Similar papers 2
November 10, 2005
Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for deal...
May 2, 2019
We employ techniques of machine-learning, exemplified by support vector machines and neural classifiers, to initiate the study of whether AI can "learn" algebraic structures. Using finite groups and finite rings as a concrete playground, we find that questions such as identification of simple groups by "looking" at the Cayley table or correctly matching addition and multiplication tables for finite rings can, at least for structures of small size, be performed by the AI, even...
December 23, 2022
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changin...
December 11, 2020
We propose a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. Theoretical considerations are supported by numerical experiments, which demonstrate the effectiveness and...
November 20, 2022
Symbolic regression is emerging as a promising machine learning method for learning succinct underlying interpretable mathematical expressions directly from data. Whereas it has been traditionally tackled with genetic programming, it has recently gained a growing interest in deep learning as a data-driven model discovery method, achieving significant advances in various application domains ranging from fundamental to applied sciences. This survey presents a structured and com...
October 10, 2024
A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024)....
May 12, 2023
Neurosymbolic AI deals with models that combine symbolic processing, like classic AI, and neural networks, as it's a very established area. These models are emerging as an effort toward Artificial General Intelligence (AGI) by both exploring an alternative to just increasing datasets' and models' sizes and combining Learning over the data distribution, Reasoning on prior and learned knowledge, and by symbiotically using them. This survey investigates research papers in this a...
October 29, 2024
Integrating symbolic techniques with statistical ones is a long-standing problem in artificial intelligence. The motivation is that the strengths of either area match the weaknesses of the other, and $\unicode{x2013}$ by combining the two $\unicode{x2013}$ the weaknesses of either method can be limited. Neuro-symbolic AI focuses on this integration where the statistical methods are in particular neural networks. In recent years, there has been significant progress in this res...
December 10, 2019
Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence. This is the problem of $\textit{symbolic regression}$. Despite recent advances in training neural networks to solve complex tasks, deep learning approaches to symbolic regression are underexplored. We propose a framework that leverages deep learning for symbolic regression via a simple idea: use a large model to search the space of small models. Specifical...
February 29, 2020
Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as sugges...