February 28, 2025
In this manuscript, we demonstrate, by using several regression techniques, that one can machine learn the other independent Hodge numbers of complete intersection Calabi-Yau four-folds and five-folds in terms of $h^{1,1}$ and $h^{2,1}$. Consequently, we combine the Hodge numbers $h^{1,1}$ and $h^{2,1}$ from the complete intersection of Calabi-Yau three-folds, four-folds, and five-folds into a single dataset. We then implemented various classification algorithms on this dataset. For example, the accuracy of the Gaussian process and the naive Bayes classifications are all $100\%$ when a binary classification of three-folds and four-folds is performed. With the Support Vector Machine (SVM) algorithm plots, a special corner is detected in the Calabi-Yau three-folds landscape (characterized by $17\leq h^{1,1}\leq 30$ and $20\leq h^{2,1}\leq 40$) when multiclass classification is performed. Furthermore, the best accuracy, $0.996459$, in classifying Calabi-Yau three-folds, four-folds, and five-folds, is obtained with the naive Bayes classification.
Similar papers 1
April 17, 2024
Gaussian Process Regression, Kernel Support Vector Regression, the random forest, extreme gradient boosting and the generalized linear model algorithms are applied to data of Complete Intersection Calabi-Yau 3-folds. It is shown that Gaussian process regression is the most suitable for learning the Hodge number h^(2,1)in terms of h^(1,1). The performance of this regression algorithm is such that the Pearson correlation coefficient for the validation set is R^2 = 0.9999999995 ...
September 5, 2020
Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...
October 24, 2023
We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...
July 30, 2020
We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...
March 7, 2019
Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
August 4, 2021
We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...
May 27, 2024
In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...
November 20, 2023
We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...