April 19, 2000
Similar papers 4
January 11, 2018
Magnetized strange quark stars, composed of strange quark matter (SQM) and self-bound by strong interactions, can be formed if the energy per baryon of magnetized SQM is less than that of the most stable $^{56}$Fe nucleus under the zero external pressure and temperature. Utilizing the MIT bag model description of magnetized SQM under charge neutrality and beta equilibrium conditions, the corresponding absolute stability window in the parameter space of the theory is determine...
March 20, 2013
We investigate the existence of possible stable strange matter and related stability windows at finite temperature for different models that are generally applied to describe quark stars, namely, the quark-mass density dependent model, the MIT bag model and the Nambu-Jona-Lasinio model. We emphasize that, although the limits for stable strange matter depend on a comparison with the ground state of 56Fe, which is a zero temperature state, the quantity that has to be used in th...
March 9, 2019
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two particle correlations taken into account based on using the Bonn meson-exchan...
October 8, 2012
In this paper we study strange matter by investigating the stability window within the QMDD model at zero temperature and check that it can explain the very massive pulsar recently detected. We compare our results with the ones obtained from the MIT bag model and see that the QMDD model can explain larger masses, due to the stiffening of the equation of state.
July 27, 2010
We investigate the stability of strange quark matter and the properties of the cor- responding strange stars, within a wide range of quark mass scaling. The calculation shows that the resulting maximum mass always lies between 1.5M_{sun} and 1.8M_{sun} for all the scalings chosen here. Strange star sequences with a linear scaling would sup- port less gravitational mass, and a change (increase or decrease) of the scaling around the linear scaling would lead to a higher maximum...
March 11, 2010
Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an int...
January 30, 2015
The stability of magnetized strange quark matter (MSQM) is studied in the MIT bag model with the density dependent bag pressure. In the consistent thermodynamic description of MSQM, the quark chemical potentials, the total thermodynamic potential and the anisotropic pressure acquire the corresponding additional term proportional to the density derivative of the bag pressure. The model parameter space is determined, for which MSQM is absolutely stable, i.e., its energy per bar...
November 25, 2008
It is possible that a system composed of up, down and strange quarks consists the true ground state of nuclear matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked state. Here are presented calculations made on the basis of the MIT bag model considering the influence of finite temperature on the allowed para...
July 1, 2000
We compute numerical models of uniformly rotating strange stars (SS) in general relativity for the recently proposed QCD-based equation of state (EOS) of strange quark matter (Dey et al. 1998). Static models based on this EOS are characterised by a larger surface redshift than strange stars within the MIT bag model. The frequencies of the fastest rotating configurations described by Dey model are much higher than these for neutron stars (NS) and for the simplest SS MIT bag mo...
December 7, 2024
We investigated the radial and non-radial fundamental ($f$) mode oscillations of self-bound (quark) stars obtained after employing the Vector MIT (vMIT) bag model. Within this model, we computed the equation of state for strange quark matter satisfying thermodynamic consistency. This allowed us to obtain the corresponding behavior of the speed of sound, mass-radius relation, and gravitational redshift. In particular, our choice of $G_V$ = 0.30 fm$^2$ produces masses and radii...