October 27, 2009
An improved version has been submitted with the title: Recessional velocities and Hubble's law in Schwarzschild-de Sitter space. arXiv:1001.1875
July 13, 2007
A straight-forward interpretation of standard Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies is that objects move apart due to the expansion of space, and that sufficiently distant galaxies must be receding at velocities exceeding the speed of light. Recently, however, it has been suggested that a simple transformation into conformal coordinates can remove superluminal recession velocities, and hence the concept of the expansion of space should be abandoned. This work...
January 9, 2006
In all Friedman models, the cosmological redshift is widely interpreted as a consequence of the general-relativistic phenomenon of EXPANSION OF SPACE. Other commonly believed consequences of this phenomenon are superluminal recession velocities of distant galaxies and the distance to the particle horizon greater than c*t (where t is the age of the Universe), in apparent conflict with special relativity. Here, we study a particular Friedman model: empty universe. This model ex...
September 29, 2011
The velocity anomaly recently reported by the OPERA collaboration appears strikingly at odds with the theory of special relativity. I offer a reinterpretation which removes this conflict, to wit that neutrinos yield a truer measurement of Einstein's limiting speed, and that light and indeed all other matter are retarded by additional interactions with the dark universe. I discuss existing experimental constraints and show that such a notion, considered cosmologically, can be ...
October 11, 2012
What does it mean to say that space expands? One approach to this question is the study of relative velocities. In this context, a non local test particle is "superluminal" if its relative velocity exceeds the local speed of light of the observer. The existence of superluminal relative velocities of receding test particles, in a particular cosmological model, suggests itself as a possible criterion for expansion of space in that model. In this point of view, superluminal velo...
May 25, 2016
In classes on cosmology, students are often told that photons stretch as space expands, but just how physical is this picture? Does space really expand? In this article, we explore the notion of the redshift of light with Einstein's general theory of relativity, showing that the core underpinning principles reveal that redshifts are both simpler and more complex than you might naively think. This has significant implications for the observed redshifting of photons as they tra...
November 23, 2018
This article presents a simple model that reproduces key concepts of modern cosmology within the framework of special relativity, at a level that is suitable for an undergraduate or high school setting. The model includes cosmic expansion governed by a universal scale factor, the Hubble relation, proper distances between galaxies and the associated recession speeds, comoving coordinates, angular and luminosity distances, and the relation between the cosmic scale factor and th...
April 21, 2001
We use the dynamics of a galaxy, set up initially at a constant proper distance from an observer, to derive and illustrate two counter-intuitive general relativistic results. Although the galaxy does gradually join the expansion of the universe (Hubble flow), it does not necessarily recede from us. In particular, in the currently favored cosmological model, which includes a cosmological constant, the galaxy recedes from the observer as it joins the Hubble flow, but in the pre...
May 27, 2003
A more clear-cut answer to the title question is, ``Yes'' if the universal expansion started with a big bang; ``No'' if it started infinitely slowly.
October 20, 2006
This paper presents a compelling argument for the physical light speed in the homogeneous and isotropic Friedman-Lemaitre-Robertson-Walker (FLRW) universe to vary with the cosmic time coordinate t of FLRW. It will be variable when the radial co-moving differential coordinate of FLRW is interpreted as physical and therefor transformable by a Lorentz transform locally to differentials of stationary physical coordinates. Because the FLRW differential radial distance has a time v...