June 22, 2001
It has been firmly established that there exists a tight correlation between the central black hole mass and velocity dispersion (or luminosity) of elliptical galaxies, ``pseudobulges'' and bulges of galaxies, although the nature of this correlation still remains unclear. In this letter, we explore the possibility of extrapolating such a correlation to less massive, spherical systems like globular clusters. In particular, motivated by the apparent success in globular cluster M15, we present an estimate of the central black hole mass for a number of globular clusters with available velocity dispersion in the literature.
Similar papers 1
January 19, 2000
Globular clusters could harbor massive central black holes (BHs), just as galaxies do. So far, no unambiguous detection of a massive BH has been reported for any globular cluster. However, the dense core-collapsed cluster M15 seems to be a good candidate. I review the available photometric and kinematic data for this cluster. Both are consistent with a BH of approximately 2000 solar masses, although such a BH is not unambiguously required by the data. I discuss some ongoing s...
October 14, 2009
Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively...
March 31, 2012
We find evidence that the mass MBH of central supermassive black holes (SMBHs) correlates with the velocity dispersion sigma_GC of globular cluster systems of their host galaxies. This extends the well-known MBH - sigma_sph relation between black hole mass and velocity dispersion of the host spheroidal component. We compile published measurements of both MBH and sigma_GC for a sample of 13 systems and find the relation log(MBH) = alpha + beta log(sigma_GC/200) with alpha = 8....
January 14, 2013
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to detect the crucial rise in the velocity-dispersion profile which indicates the presence of a central black hole. In addition, N-body simulations compared to our data will give us a deeper insight in the properties of clusters with b...
September 16, 2002
We present the detection of a 2.0(+1.4,-0.8)x10^4 solar mass black hole (BH) in the stellar cluster G1 (Mayall II), based on data taken with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. G1 is one of the most massive stellar clusters in M31. The central velocity dispersion (25 kms) and the measured BH mass of G1 places it on a linear extrapolation of the correlation between BH mass and bulge velocity dispersion established for nearby galaxies. T...
September 16, 2002
We analyze HST/STIS spectra (see Paper I) of the central region of the dense globular cluster M15. We infer the velocities of 64 individual stars, two-thirds of which have their velocity measured for the first time. This triples the number of stars with measured velocities in the central 1 arcsec of M15 and doubles the number in the central 2 arcsec. Combined with existing ground-based data we obtain the radial profiles of the projected kinematical quantities. The RMS velocit...
April 26, 2013
For galaxies hosting supermassive black holes (SMBHs), it has been observed that the mass of the central black hole (M_BH) tightly correlates with the effective or central velocity dispersion (sigma) of the host galaxy. The origin of this M_BH - sigma scaling relation is assumed to lie in the merging history of the galaxies but many open questions about its origin and the behavior in different mass ranges still need to be addressed. The goal of this work is to study the black...
September 28, 2016
We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and ener...
September 18, 2003
We estimate the number of individual, fast-moving stars observable in globular clusters under the assumption that the clusters contain massive central black holes which follow the galactic black-hole mass vs. sigma relationship. We find that radial velocity measurements are unlikely to detect such stars, but that proper motion studies could reveal such stars, if they exist, in the most likely clusters. Thus, HST proper motion studies can test this hypothesis in a few nearby c...
April 24, 2013
Understanding whether the bulge or the halo provides the primary link to the growth of supermassive black holes has strong implications for galaxy evolution and supermassive black hole formation itself. In this paper, we approach this issue by investigating extragalactic globular cluster (GC) systems, which can be used to probe the physics of both the bulge and the halo of the host galaxy. We study the relation between the supermassive black hole masses M_BH and the globular ...