August 13, 2001
Similar papers 4
October 11, 2010
We use a new set of cold dark matter simulations of the local universe to investigate the distribution of fossils of primordial dwarf galaxies within, and around the Milky Way. Throughout, we build upon previous results showing agreement between the observed stellar properties of a subset of the ultra-faint dwarfs and our simulated fossils. Here, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity functions consistent with ob...
May 11, 2011
We combine the high-resolution Aquarius simulations with three-dimensional models of reionization based on the initial density field of the Aquarius parent simulation, Millennium-II, to study the impact of patchy reionization on the faint satellite population of Milky Way halos. Because the Aquarius suite consists of zoom-in simulations of halos in the Millennium-II volume, we follow the formation of substructure and the growth of reionization bubbles due to the larger enviro...
September 13, 2021
The vast majority of low-mass satellite galaxies around the Milky Way and M31 appear virtually devoid of cool gas and show no signs of recent or ongoing star formation. Cosmological simulations demonstrate that such quenching is expected and is due to the harsh environmental conditions that satellites face when joining the Local Group (LG). However, recent observations of Milky Way analogues in the SAGA survey present a very different picture, showing the majority of observed...
May 18, 2010
We present the first detailed structure formation and radiative transfer simulations of the reionization history of our cosmic neighbourhood. To this end, we follow the formation of the Local Group of galaxies and nearby clusters by means of constrained simulations, which use the available observational constraints to construct a representation of those structures which reproduces their actual positions and properties at the present time. We find that the reionization history...
April 25, 2019
While many tensions between Local Group (LG) satellite galaxies and LCDM cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with Mstar > 10^5 Msun around 8 isolated Milky Way- (MW) mass host galaxies and 4 ho...
May 18, 2017
We present the survey strategy and early results of the "Satellites Around Galactic Analogs" (SAGA) Survey. The SAGA Survey's goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ($ M_r < -12.3 $). We define a Milky Way analog based on $K$-band luminosity and local environment. Here, we present satellite luminosity functions for 8 Milky Way analog galaxies between 20 to 40 Mpc....
March 15, 2017
Recent discovery of many dwarf satellite galaxies in the direction of the Small and Large Magellanic Clouds (SMC and LMC) provokes questions of their origins, and what they can reveal about galaxy evolution theory. Here, we predict the satellite stellar mass function of Magellanic Cloud-mass host galaxies using abundance matching and reionization models applied to the \textit{Caterpillar} simulations. Specifically focusing on the volume within $50$~kpc of the LMC, we predict ...
August 27, 2008
The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that domin...
December 14, 2015
Theoretical models of galaxy formation based on the cold dark matter cosmogony typically require strong feedback from supernova (SN) explosions in order to reproduce the Milky Way satellite galaxy luminosity function and the faint end of the field galaxy luminosity function. However, too strong a SN feedback also leads to the universe reionizing too late, and the metallicities of Milky Way satellites being too low. The combination of these four observations therefore places t...
September 23, 2010
The Missing Satellites Problem (MSP) broadly refers to the overabundance of predicted Cold Dark Matter (CDM) subhalos compared to satellite galaxies known to exist in the Local Group. The most popular interpretation of the MSP is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The question from that standpoint is to identify the feedback source that makes small halos dark and to identify any obvious mass scale where the truncati...