January 1, 2003
We present a determination of the `Cosmic Optical Spectrum' of the Universe, i.e. the ensemble emission from galaxies, as determined from the red-selected Sloan Digital Sky Survey main galaxy sample and compare with previous results of the blue-selected 2dF Galaxy Redshift Survey. Broadly we find good agreement in both the spectrum and the derived star-formation histories. If we use a power-law star-formation history model where star-formation rate $\propto (1+z)^\beta$ out to z=1, then we find that $\beta$ of 2 to 3 is still the most likely model and there is no evidence for current surveys missing large amounts of star formation at high redshift. In particular `Fossil Cosmology' of the local universe gives measures of star-formation history which are consistent with direct observations at high redshift. Using the photometry of SDSS we are able to derive the cosmic spectrum in absolute units (i.e.$ W \AA$^{-1}$ Mpc$^{-3}$) at 2--5\AA resolution and find good agreement with published broad-band luminosity densities. For a Salpeter IMF the best fit stellar mass/light ratio is 3.7--7.5 $\Msun/\Lsun$ in the r-band (corresponding to $\omstars h = 0.0025$--0.0055) and from both the stellar emission history and the H$\alpha$ luminosity density independently we find a cosmological star-formation rate of 0.03--0.04 h $\Msun$ yr$^{-1}$ Mpc$^{-3}$ today.
Similar papers 1
October 30, 2001
We present the first results on the history of star formation in the Universe based on the `cosmic spectrum', in particular, the volume-averaged, luminosity-weighted, stellar absorption line spectrum of present day galaxies from the 2dFGRS. This method is novel in that unlike previous studies it is not an estimator based on total luminosity density. The cosmic spectrum is fitted with models of population synthesis, tracing the history of star formation prior to the epoch of t...
August 24, 2006
We present the results of a MOPED analysis of ~3 x 10^5 galaxy spectra from the Sloan Digital Sky Survey Data Release Three (SDSS DR3), with a number of improvements in data, modelling and analysis compared with our previous analysis of DR1. The improvements include: modelling the galaxies with theoretical models at a higher spectral resolution of 3\AA; better calibrated data; an extended list of excluded emission lines, and a wider range of dust models. We present new estima...
August 25, 1997
We develop a method for interpreting faint galaxy data which focuses on the integrated light radiated from the galaxy population as a whole. The emission history of the universe at ultraviolet, optical, and near-infrared wavelengths is modeled from the present epoch to z~4 by tracing the evolution with cosmic time of the galaxy luminosity density, as determined from several deep spectroscopic samples and the Hubble Deep Field (HDF) imaging survey. The global spectrophotometri...
May 6, 2013
We present new results on the cosmic star formation history in the SXDS-UDS field out to z=1.6. We compile narrow-band data from the Subaru Telescope and the Visible and Infrared Survey Telescope for Astronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to make a selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmic time. We determine photometric redshifts for the sample using 11-band photometry, and use a spectroscop...
June 27, 2007
We use a sample of rest-frame UV selected and spectroscopically observed galaxies at redshifts 1.9<z<3.4, combined with ground-based spectroscopic H-alpha and Spitzer MIPS 24 micron data, to derive the most robust measurements of the rest-frame UV, H-alpha, and infrared (IR) luminosity functions (LFs) at these redshifts. Our sample is by far the largest of its kind, with over 2000 spectroscopic redshifts in the range 1.9<z<3.4 and ~15000 photometric candidates in 29 independe...
November 6, 2001
We address the effects of cosmological surface brightness dimming on observations of faint galaxies by examining the distribution of "unobscured" star formation rate intensities versus redshift. We use the star formation rate intensity distribution function to assess the ultraviolet luminosity density versus redshift, based on our photometry and photometric redshift measurements of faint galaxies in the HDF and the HDF--S WFPC2 and NICMOS fields. We find that (1) previous mea...
November 25, 2002
Using MOPED we determine non-parametrically the star-formation and metallicity history of over 37,000 high-quality galaxy spectra from the Sloan Digital Sky Survey (SDSS) early data release. We use the entire spectral range, rather than concentrating on specific features, and we estimate the complete star formation history without prior assumptions about its form (by constructing so-called `population boxes'). The main results of this initial study are that the star formation...
April 14, 2003
In this review I will describe a number of recent advances in extragalactic astronomy. First of all I will describe our current best estimates of the star formation history of the Universe. Then I will describe measurements of local galaxies and their stellar populations, concentrating on measurements of the luminosity functions and stellar population compositions of the different kinds of galaxies. Finally, I will investigate the relationship between these two sets of result...
May 16, 2001
A meta-analysis is performed of the literature on evolution in cosmic star-formation rate density from redshift unity to the present day. The measurements are extremely diverse, including radio, infrared, and ultraviolet broad-band photometric indicators, and visible and near-ultraviolet line-emission indicators. Although there is large scatter among indicators at any given redshift, virtually all studies find a significant decrease from redshift unity to the present day. Thi...
January 10, 1996
The comoving luminosity density of the Universe is estimated from the CFRS faint galaxy sample in three wavebands (2800A, 4400A and 1 micron) over the redshift range 0 < z < 1. In all three wavebands, the comoving luminosity density increases markedly with redshift. For a (q_0 = 0.5, Omega = 1.0) cosmological model, the comoving luminosity density increases as $(1+z)^{2.1 \pm 0.5}$ at 1 micron, as $(1+z)^{2.7 \pm 0.5}$ at 4400A and as $(1+z)^{3.9 \pm 0.75}$ at 2800A, these ex...