January 13, 2012
Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve imag...
April 11, 2012
Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar ...
March 23, 2000
This article is a sort of sequel of the earlier extensive review by Saha (1999a) where emphasis was laid down on the ground based single aperture, as well as on the working long baseline optical interferometers (LBI) situated at the various observatories across the globe that are producing a large amount of astronomical results. Since the future of high resolution astronomy lies with the new generation of arrays, the numerous technical challenges of developing such systems ar...
February 28, 2009
The space-time correlations of streams of photons can provide fundamentally new channels of information about the Universe. Today's astronomical observations essentially measure certain amplitude coherence functions produced by a source. The spatial correlations of wave fields has traditionally been exploited in Michelson-style amplitude interferometry. However the technology of the past was largely incapable of fine timing resolution and recording multiple beams. When time a...
December 20, 2004
I present a discussion of fundamental stellar parameters and their observational determination in the context of interferometric measurements with current and future optical/infrared interferometric facilities. Stellar parameters and the importance of their determination for stellar physics are discussed. One of the primary uses of interferometry in the field of stellar physics is the measurement of the intensity profile across the stellar disk, both as a function of position...
May 2, 2012
The closest examples of high-mass star birth occurs in deeply embedded environments at kiloparsec distances. Although much progress has been made, an observationally validated picture of the dominant processes which allows the central hydrostatic object to grow in mass has yet to be established. The observational technique of optical interferometry has demonstrated its potential in the field of high-mass star formation by delivering a milli-arcsecond infrared view on the comp...
August 14, 2019
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details of the many dynamic processes (e.g., evolving magnetic fields, accretion, convection, shocks, pulsations, winds, and jets) that affect stellar formation, structure, and evolution. These observations can only be provided by long-bas...
April 25, 2016
The study of fundamental properties (such as temperatures, radii, masses, and ages) and interior processes (such as convection and angular momentum transport) of stars has implications on various topics in astrophysics, ranging from the evolution of galaxies to understanding exoplanets. In this contribution I will review the basic principles of two key observational methods for constraining fundamental and interior properties of single field stars: the study stellar oscillati...
February 14, 2014
An introduction to the theory and practical aspects of infrared interferometry is given in the context of the study of massive young stellar objects. Basic interferometric concepts, as well as observable quantities and their use, are presented. Recent advancements in interferometric studies of massive young stellar objects are discussed.
January 12, 2018
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since 2004, optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent reco...