February 27, 2004
Similar papers 3
June 10, 2008
We develop a physical model for how galactic disks survive and/or are destroyed in interactions. Based on dynamical arguments, we show gas primarily loses angular momentum to internal torques in a merger. Gas within some characteristic radius (a function of the orbital parameters, mass ratio, and gas fraction of the merging galaxies), will quickly lose angular momentum to the stars sharing the perturbed disk, fall to the center and be consumed in a starburst. A similar analys...
January 24, 1995
Mergers between gas--rich disks and less--massive dwarf galaxies are studied using numerical simulation. As the orbit of a satellite decays through dynamical friction, the primary disk develops large-amplitude spirals in response to its tidal forcing. While these features arise in both the stars and the gas in the disk, the non--axisymmetric structures in the gas differ slightly from those in the stars. In particular, as a consequence of the formation of strong shocks in the ...
January 10, 2017
Context: In a series of papers, we study the major merger of two disk galaxies in order to establish whether or not such a merger can produce a disc galaxy. Aims: Our aim here is to describe in detail the technical aspects of our numerical experiments. Methods: We discuss the initial conditions of our major merger, which consist of two protogalaxies on a collision orbit. We show that such merger simulations can produce a non-realistic central mass concentration, and we propos...
November 3, 2011
Utilizing a high-resolution (114 pc/h) adaptive mesh-refinement cosmological galaxy formation simulation of the standard cold dark matter model with a large (2000-3000 galaxies with stellar mass greater than 1e9 Msun) statistical sample, we examine the role of major mergers in driving star formation at z>1 in a cosmological setting, after validating that some of the key properties of simulated galaxies are in reasonable agreement with observations, including luminosity functi...
February 10, 2014
We introduce a semi-analytic galaxy formation model implementing a self-consistent treatment for the hot halo gas configuration and the assembly of central disks. Using the model, we explore a preventative feedback model, in which the circum-halo medium is assumed to be preheated up to a certain entropy level by early starbursts or other processes, and compare it with an ejective feedback model, in which baryons are first accreted into dark matter halos and subsequently eject...
January 31, 2006
The processes are investigated by which gas loses its angular momentum during the protogalactic collapse phase, leading to disk galaxies that are too compact with respect to the observations. High-resolution N-body/SPH simulations in a cosmological context are presented including cold gas and dark matter. A halo with quiet merging activity since z~3.8 and with a high spin parameter is analysed that should be an ideal candidate for the formation of an extended galactic disk. W...
January 29, 2008
In the CDM cosmological framework structures grow from merging with smaller structures. Merging should have observable effects on galaxies including destroying disks and creating spheroids. This proceeding aims to give a brief overview of how mergers occur in cosmological simulations. In this regard it is important to understand that dark matter halo mergers are not galaxy mergers; a theory of galaxy formation is necessary to connect the two. Mergers of galaxies in hydrodynam...
September 6, 2017
We use a suite of hydrodynamical cosmological simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project to investigate the formation of hot hydrostatic haloes and their dependence on feedback mechanisms. We find that the appearance of a strong bimodality in the probability density function (PDF) of the ratio of the radiative cooling and dynamical times for halo gas provides a clear signature of the formation of a hot corona. Haloes of tota...
July 16, 2015
We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is ...
January 4, 2013
We study galaxy super-winds driven in major mergers, using pc-resolution simulations with detailed models for stellar feedback that can self-consistently follow the formation/destruction of GMCs and generation of winds. The models include molecular cooling, star formation at high densities in GMCs, and gas recycling and feedback from SNe (I&II), stellar winds, and radiation pressure. We study mergers of systems from SMC-like dwarfs and Milky Way analogues to z~2 starburst dis...