May 28, 2004
We investigate efficiency and time dependence of metal enrichment processes in the Intra-Cluster Medium (ICM). In this presentation we concentrate on the effects of galactic winds. The mass loss rates due to galactic winds are calculated with a special algorithm, which takes into account cosmic rays and magnetic fields. This algorithm is embedded in a combined N-body/hydrodynamic code which calculates the dynamics and evolution of a cluster. We present mass loss rates depending on galaxy properties like type, mass, gas mass fraction and the surrounding ICM. In addition we show metallicity maps as they would be observed with X-ray telescopes.
Similar papers 1
July 22, 2009
We investigate the efficiency and time-dependence of thermally and cosmic ray driven galactic winds for the metal enrichment of the intra-cluster medium (ICM) using a new analytical approximation for the mass outflow. The spatial distribution of the metals are studied using radial metallicity profiles and 2D metallicity maps of the model clusters as they would be observed by X-ray telescopes like XMM-Newton. Analytical approximations for the mass loss by galactic winds driven...
January 29, 2007
We investigate the efficiency of galactic mass loss, triggered by ram-pressure stripping and galactic winds of cluster galaxies, on the chemical enrichment of the intra-cluster medium (ICM). We combine N-body and hydrodynamic simulations with a semi-numerical galaxy formation model. By including simultaneously different enrichment processes, namely ram-pressure stripping and galactic winds, in galaxy-cluster simulations, we are able to reproduce the observed metal distributio...
April 4, 2005
We present numerical simulations of galaxy clusters which include interaction processes between the galaxies and the intra-cluster gas. The considered interaction processes are galactic winds and ram-pressure stripping, which both transfer metal-enriched interstellar medium into the intra-cluster gas and hence increase its metallicity. We investigate the efficiency and time evolution of the interaction processes by simulated metallicity maps, which are directly comparable to ...
May 12, 2007
We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra--cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the Tree-SPH \gd code. This model allows us to follow the metal release from SNII, SNIa and AGB stars, by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (...
August 3, 2005
We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galactic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to r...
November 5, 2018
The distribution of chemical elements in the hot intracluster medium (ICM) retains valuable information about the enrichment and star formation histories of galaxy clusters, and on the feedback and dynamical processes driving the evolution of the cosmic baryons. In the present study we review the progresses made so far in the modelling of the ICM chemical enrichment in a cosmological context, focusing in particular on cosmological hydrodynamical simulations. We will review th...
July 26, 2005
We investigate the impact of galactic mass loss triggered by ram-pressure stripping of cluster galaxies on the evolution of the intra-cluster medium (ICM). We use combined N-body and hydrodynamic simulations together with a phenomenological galaxy formation model and a prescription of the effect of ram-pressure stripping on the galaxies. We analyze the effect of galaxy -- ICM interaction for different model clusters with different masses and different merger histories. Our si...
February 7, 2008
We present a study on the origin of the metallicity evolution of the intra-cluster medium (ICM) by applying a semi-analytic model of galaxy formation to N-body/SPH (smoothed particle hydrodynamic) non-radiative numerical simulations of clusters of galaxies. The semi-analytic model includes gas cooling, star formation, supernovae feedback and metal enrichment, and is linked to the diffuse gas of the underlying simulations so that the chemical properties of gas particles are dy...
July 22, 2014
We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (M vir = 1.17 x 10^14 - 1.06 x 10^15 M). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulatio...
August 24, 2001
The effects of cluster mergers on the metal enrichment of the intra-cluster gas in clusters of galaxies are reviewed. Mergers can influence the metal production as well as the gas ejection processes, which transport the gas from the galaxy potential wells into the intra-cluster gas. Several processes are discussed: ram-pressure stripping, galactic winds and star formation activity. Simulations on different scales ranging from galaxy size to large-scale structure are presented...