May 28, 2004
Similar papers 5
December 8, 2016
We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters,which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well, or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N-Body/Smooth Particle Hydrodynamics simulations of galactic ...
April 20, 2005
Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium. New observations are revealing the ubiquity of this process, particularly at high redshift. We describe the physics behind these winds, discuss the observational evidence for them in nearby star-forming and active galaxies and in the high-redshift universe, and consider the implications of energetic winds for the formation and evolution...
January 7, 2008
There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their effi...
August 28, 2001
We review observations on the chemical enrichment of the intracluster medium (ICM) performed using BeppoSAX MECS data. The picture emerging is that non-cooling flow clusters have flat metallicity profiles, whereas a strong enhancement in the abundance is found in the central regions of the cooling flow clusters. All the non-cooling flow clusters present evidence of recent merger activity suggesting that the merger events redistributes efficiently the metal content of the ICM....
August 10, 2009
We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and...
November 4, 2013
We present an analysis of the properties of the ICM in an extended set of cosmological hydrodynamical simulations of galaxy clusters and groups performed with the TreePM+SPH GADGET-3 code. Besides a set of non-radiative simulations, we carried out two sets of simulations including radiative cooling, star formation, metal enrichment and feedback from supernovae, one of which also accounts for the effect of feedback from AGN resulting from gas accretion onto super-massive black...
October 30, 2009
A study of the IGM metal enrichment using a series of SPH simulations is presented, employing metal cooling and turbulent diffusion of metals and thermal energy. An adiabatic feedback mechanism was adopted where gas cooling was prevented to generate galactic winds without explicit wind particles. The simulations produced a cosmic star formation history (SFH) that is broadly consistent with observations until z $\sim$ 0.5, and a steady evolution of the universal neutral hydrog...
April 15, 2005
Cosmological LambdaCDM TreeSPH simulations of the formation and evolution of galaxy groups and clusters have been performed. The simulations include: star formation, chemical evolution with non-instantaneous recycling, metal dependent radiative cooling, strong star burst and (optionally) AGN driven galactic super winds, effects of a meta-galactic UV field and thermal conduction. We report results on the temperature and entropy profiles of the ICM, the X-ray luminosity, cold f...
October 2, 2015
We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive ($M_{\rm vir}\approx 6\times 10^{14}$ M$_{\odot}/h$) simulated galaxy clusters from the Rhapsody-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of AGN feedback at the sub-grid level. AGN feedback is required to produce realistic galaxy and cluster properties and ...
May 17, 1995
Following the recent suggestion that it is dwarf galaxies in clusters -- as opposed to large ellipticals -- that provide the intracluster gas, we estimate the metallicity of the intracluster medium (ICM) in such a case. We derive analytical expressions for the fraction of mass of dwarf galaxies that is ejected, and estimate the metallicity of the resulting intracluster gas. We find that the metallicity resulting from this hypothesis is adequate only for clusters with low-meta...