September 22, 2004
It is well-known that the noise associated with the collection of an astronomical image by a CCD camera is, in large part, Poissonian. One would expect, therefore, that computational approaches that incorporate this a priori information will be more effective than those that do not. The Richardson-Lucy (RL) algorithm, for example, can be viewed as a maximum-likelihood (ML) method for image deblurring when the data noise is assumed to be Poissonian. Least-squares (LS) approaches, on the other hand, arises from the assumption that the noise is Gaussian with fixed variance across pixels, which is rarely accurate. Given this, it is surprising that in many cases results obtained using LS techniques are relatively insensitive to whether the noise is Poissonian or Gaussian. Furthermore, in the presence of Poisson noise, results obtained using LS techniques are often comparable with those obtained by the RL algorithm. We seek an explanation of these phenomena via an examination of the regularization properties of particular LS algorithms. In addition, a careful analysis of the RL algorithm yields an explanation as to why it is more effective than LS approaches for star-like objects, and why it provides similar reconstructions for extended objects. We finish with a convergence analysis of the RL algorithm. Numerical results are presented throughout the paper. It is important to stress that the subject treated in this paper is not academic. In fact, in comparison with many ML algorithms, the LS algorithms are much easier to use and to implement, often provide faster convergence rates, and are much more flexible regarding the incorporation of constraints on the solution. Consequently, if little to no improvement is gained in the use of an ML approach over an LS algorithm, the latter will often be the preferred approach.
Similar papers 1
April 8, 2010
Restoration of digital images from their degraded measurements has always been a problem of great theoretical and practical importance in numerous applications of imaging sciences. A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomenon as well as by the statistical properties of measurement noises. The present study is concerned with the case in which the images of interest are corrupted by convolutional blurs a...
November 1, 2024
Richardson-Lucy deconvolution is widely used to restore images from degradation caused by the broadening effects of a point spread function and corruption by photon shot noise, in order to recover an underlying object. In practice, this is achieved by iteratively maximizing a Poisson emission likelihood. However, the RL algorithm is known to prefer sparse solutions and overfit noise, leading to high-frequency artifacts. The structure of these artifacts is sensitive to the num...
September 29, 2009
The problem of reconstruction of digital images from their degraded measurements is regarded as a problem of central importance in various fields of engineering and imaging sciences. In such cases, the degradation is typically caused by the resolution limitations of an imaging device in use and/or by the destructive influence of measurement noise. Specifically, when the noise obeys a Poisson probability law, standard approaches to the problem of image reconstruction are based...
October 8, 2012
The Richardson-Lucy method is the most popular deconvolution method in astronomy because it preserves the number of counts and the non-negativity of the original object. Regularization is, in general, obtained by an early stopping of Richardson-Lucy iterations. In the case of point-wise objects such as binaries or open star clusters, iterations can be pushed to convergence. However, it is well-known that Richardson-Lucy is an inefficient method. In most cases, acceptable solu...
April 30, 2009
Although much research has been devoted to the problem of restoring Poissonian images, namely in the fields of medical and astronomical imaging, applying the state of the art regularizers (such as those based on wavelets or total variation) to this class of images is still an open research front. This paper proposes a new image deconvolution approach for images with Poisson statistical models, with the following building blocks: (a) a standard regularization/MAP criterion, co...
July 3, 2024
Iterative deblurring, notably the Richardson-Lucy algorithm with and without regularization, is analyzed in the context of nuclear and high-energy physics applications. In these applications, probability distributions may be discretized into a few bins, measurement statistics can be high, and instrument performance can be well understood. In such circumstances, it is essential to understand the deblurring first without any explicit noise considerations. We employ singular val...
May 2, 2013
In this paper we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback-Leibler divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is nonconvex and we propose to solve it by means of an inexact alternating mini...
March 11, 2011
In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis and synthesis-type sparsity pri...
September 15, 2022
In observational astronomy, noise obscures signals of interest. Large-scale astronomical surveys are growing in size and complexity, which will produce more data and increase the workload of data processing. Developing automated tools, such as convolutional neural networks (CNN), for denoising has become a promising area of research. We investigate the feasibility of CNN-based self-supervised learning algorithms (e.g., Noise2Noise) for denoising astronomical images. We experi...
September 27, 2018
This paper proposes a deep learning architecture that attains statistically significant improvements over traditional algorithms in Poisson image denoising espically when the noise is strong. Poisson noise commonly occurs in low-light and photon- limited settings, where the noise can be most accurately modeled by the Poission distribution. Poisson noise traditionally prevails only in specific fields such as astronomical imaging. However, with the booming market of surveillanc...