June 17, 2005
Similar papers 2
February 7, 2006
A detection of the primordial gravitational wave background is considered to be the ``smoking-gun '' evidence for inflation. While super-horizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tens...
July 12, 1996
Detection of the gravitational waves excited during inflation as quantum mechanical fluctuations is a key test of inflation and crucial to learning about the specifics of the inflationary model. We discuss the potential of Cosmic Background Radiation (CBR) anisotropy and polarization and of laser interferometers such as LIGO, VIRGO/GEO and LISA to detect these gravity waves.
January 27, 2008
The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow expo...
October 17, 2014
The recent claim by BICEP2 of evidence for primordial gravitational waves from inflation has focused interest on the potential for early-Universe cosmology using observations of gravitational waves. In addition to cosmic microwave background detectors, efforts are underway to carry out gravitational-wave astronomy over a wide range of frequencies including pulsar timing arrays (nHz), space-based detectors (mHz), and terrestrial detectors ($\sim$10-2000 Hz). This multiband eff...
May 5, 2016
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms th...
September 10, 2014
A period of inflation in the early universe produces a nearly scale-invariant spectrum of gravitational waves over a huge range in wavelength. If the amplitude of this gravitational wave background is large enough to be detectable with microwave background polarization measurements, it will also be detectable directly with a space-based laser interferometer. Using a Monte Carlo sampling of inflation models, we demonstrate that the combination of these two measurements will st...
January 26, 2006
In many models of inflation, the period of accelerated expansion ends with preheating, a highly non-thermal phase of evolution during which the inflaton pumps energy into a specific set of momentum modes of field(s) to which it is coupled. This necessarily induces large, transient density inhomogeneities which can source a significant spectrum of gravitational waves. In this paper, we consider the generic properties of gravitational waves produced during preheating, perform d...
July 5, 2007
The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow expo...
July 26, 1993
The Cosmic Background Explorer (COBE) detection of microwave background anisotropies may contain a component due to gravitational waves generated by inflation. It is shown that the gravitational waves from inflation might be seen using `beam-in-space' detectors, but not the Laser Interferometer Gravity Wave Observatory (LIGO). The central conclusion, dependent only on weak assumptions regarding the physics of inflation, is a surprising one. The larger the component of the COB...
April 21, 2008
We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning o...