September 22, 2005
Similar papers 4
August 4, 2010
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modelled. In this article, the emergent collision model for protoplanetery dust aggregates (G\"uttler et al. 2010) as well as the numerical model for the evolution of dust aggregates in protoplanetary disks (Zsom et al. 2010) are reviewed. It turns out t...
September 29, 2021
The inner-most regions of circumbinary discs are unstable to a parametric instability whose non-linear evolution is hydrodynamical turbulence. This results in significant particle stirring, impacting on planetary growth processes such as the streaming instability or pebble accretion. In this paper, we present the results of three-dimensional, inviscid global hydrodynamical simulations of circumbinary discs with embedded particles of 1 cm size. Hydrodynamical turbulence develo...
June 17, 2021
Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite the evidence that turbulence in protoplanetary disks may be non-Kolmogorov. In this work, we present calculations of grain collisional velocities for arbitrary turbulence models characterized by power-law spectra and determined by three dimensionle...
October 18, 1999
This paper reviews the dynamics of the growth of solid particles from micron-sized dust grains to planets in protostellar accretion disks. The formation and orbital evolution of giant protoplanets is also discussed.
June 14, 2013
The early stages of planet formation are still not well understood. Coagulation models have revealed numerous obstacles to the dust growth, such as the bouncing, fragmentation and radial drift barriers. We study the interplay between dust coagulation and drift in order to determine the conditions in protoplanetary disk that support the formation of planetesimals. We focus on planetesimal formation via sweep-up and investigate whether it can take place in a realistic protoplan...
July 7, 2010
(abridged) Angular momentum transport and accretion in protoplanetary discs are generally believed to be driven by MHD turbulence via the magneto-rotational instability (MRI). The dynamics of solid bodies embedded in such discs (dust grains, boulders, planetesimals and planets) may be strongly affected by the turbulence, such that the formation pathways for planetary systems are determined in part by the strength and spatial distribution of the turbulent flow. We examine th...
June 19, 2018
In the core accretion scenario, gas giant planets are formed form solid cores with several Earth masses via gas accretion. We investigate the formation of such cores via collisional growth from kilometer-sized planetesimals in turbulent disks. The stirring by forming cores induces collisional fragmentation and surrounding planetesimals are ground down until radial drift. The core growth is therefore stalled by the depletion of surrounding planetesiamls due to collisional frag...
September 14, 2009
Planets are built from planetesimals: solids larger than a kilometer which grow by colliding pairwise. Planetesimals themselves are unlikely to form by two-body collisions; sub-km objects have gravitational fields individually too weak, and electrostatic attraction is too feeble for growth beyond a few cm. We review the possibility that planetesimals form when self-gravity brings together vast ensembles of small particles. Even when self-gravity is weak, aerodynamic processes...
March 8, 2016
In protoplanetary disks, the distribution and abundance of small (sub)micron grains are important for a range of physical and chemical processes. For example, they dominate the optical depth at short wavelengths and their surfaces are the sites of many important chemical reactions such as the formation of water. Based on their aerodynamical properties (i.e., their strong dynamical coupling with the surrounding gas) it is often assumed that these small grains are well-mixed wi...
July 24, 2002
We investigate the formation of planetesimals via the gravitational instability of solids that have settled to the midplane of a circumstellar disk. Vertical shear between the gas and a subdisk of solids induces turbulent mixing which inhibits gravitational instability. Working in the limit of small, well-coupled particles, we find that the mixing becomes ineffective when the surface density ratio of solids to gas exceeds a critical value. Solids in excess of this precipitati...