May 15, 2020
In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-He shell and core interactions in 26 stellar evolution simulations with masses $15 - 140\,\mathrm{M}_{\odot}$, using five sets of mixing assumptions. In 22 cases H-He interactions induce local nuclear energy release in the range $ ...
January 31, 2024
Evolved cool stars of various masses are major cosmic engines, delivering substantial mechanical and radiative feedback to the interstellar medium through strong stellar winds and supernova ejecta. These stars play a pivotal role in enriching the interstellar medium with vital chemical elements that constitute the essential building blocks for forming subsequent generations of stars, planets, and potentially even life. Within the complex tapestry of processes occurring in the...
March 7, 2015
We present the first three dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We self-consistently capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical (Chandrasekhar) mass and collapse ensues, driven by electron capture and photodisintegratio...
May 1, 2017
We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using three-dimensional (3D) multi-group neutrino hydrodynamics simulations of an 18 solar mass progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at ...
January 7, 2016
Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a defi...
July 7, 2022
Our understanding of stellar structure and evolution coming from one-dimensional (1D) stellar models is limited by uncertainties related to multi-dimensional processes taking place in stellar interiors. 1D models, however, can now be tested and improved with the help of detailed three-dimensional (3D) hydrodynamics models, which can reproduce complex multi-dimensional processes over short timescales, thanks to the recent advances in computing resources. Among these processes,...
September 1, 2017
Recent three-dimensional simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of presupernova stellar evolution models....
January 9, 2006
We present the first hydrodynamic, multi-dimensional simulations of He-shell flash convection. Specifically, we investigate the properties of shell convection at a time immediately before the He- luminosity peak during the 15th thermal pulse of a stellar evolution track with initially two solar masses and metallicity Z=0.01. This choice is a representative example of a low-mass asymptotic giant branch thermal pulse. We construct the initial vertical stratification with a set ...
September 22, 2010
Motivated by a recent discovery of Supernova 2010gx and numerical results of Fryer et al.(2010), we simulate light curves for several type I supernova models, enshrouded by dense circumstellar shells, or "super-wind", rich in carbon and oxygen and having no hydrogen. We demonstrate that the most luminous events like SN2010gx can be explained by those models at moderate explosion energies (2-3) foe if the total mass of SN ejecta and a shell is (3-5) Msun and the radius of the ...
September 20, 2012
Massive stars shape their surrounding medium through the force of their stellar winds, which collide with the circumstellar medium. Because the characteristics of these stellar winds vary over the course of the evolution of the star, the circumstellar matter becomes a reflection of the stellar evolution and can be used to determine the characteristics of the progenitor star. In particular, whenever a fast wind phase follows a slow wind phase, the fast wind sweeps up its prede...