January 27, 2006
Similar papers 3
August 5, 2010
We present an extension of TRAPHIC, the method for radiative transfer of ionising radiation in smoothed particle hydrodynamics simulations that we introduced in Pawlik & Schaye (2008). The new version keeps all advantages of the original implementation: photons are transported at the speed of light, in a photon-conserving manner, directly on the spatially adaptive, unstructured grid traced out by the particles, in a computation time that is independent of the number of radiat...
August 25, 2010
I provide a pedagogic review of adaptive mesh refinement (AMR) radiation hydrodynamics (RHD) methods and codes used in simulations of star formation, at a level suitable for researchers who are not computational experts. I begin with a brief overview of the types of RHD processes that are most important to star formation, and then I formally introduce the equations of RHD and the approximations one uses to render them computationally tractable. I discuss strategies for solvin...
December 9, 2008
We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH) simulation code {\small GADGET}. It is based on a fast, robust and photon-conserving integration scheme where the radiation transport problem is approximated in terms of moments of the transfer equation and by using a variable Eddington tensor as a closure relation, following the `OTVET'-suggestion of Gnedin & Abel. We derive a suitable anisotropic diffu...
December 21, 2005
We provide a description of the SNSPH code--a parallel 3-dimensional radiation hydrodynamics code implementing treecode gravity, smooth particle hydrodynamics, and flux-limited diffusion transport schemes. We provide descriptions of the physics and parallelization techniques for this code. We present performance results on a suite of code tests (both standard and new), showing the versatility of such a code, but focusing on what we believe are important aspects of modeling co...
January 27, 2003
In this paper we present some test results of our newly developed Multi-Phase Chemo-Dynamical Smoothed Particle Hydrodynamics (MP- CD-SPH) code for galaxy evolution. At first, we present a test of the ``pure'' hydro SPH part of the code. Then we describe and test the multi-phase description of the gaseous components of the interstellar matter. In this second part we also compare our condensation and evaporation description with the results of a previous 2d multi-phase hydrody...
June 1, 2006
The concordance model of cosmology and structure formation predicts the formation of isolated very massive stars at high redshifts in dark matter dominated halos of 10^5 to 10^6 Msun. These stars photo-ionize their host primordial molecular clouds, expelling all the baryons from their halos. When the stars die, a relic HII region is formed within which large amounts of molecular hydrogen form which will allow the gas to cool efficiently when gravity assembles it into larger d...
September 10, 2011
This review discusses Smoothed Particle Hydrodynamics (SPH) in the astrophysical context, with a focus on inviscid gas dynamics. The particle-based SPH technique allows an intuitive and simple formulation of hydrodynamics that has excellent conservation properties and can be coupled to self-gravity easily and highly accurately. The Lagrangian character of SPH allows it to automatically adjust its resolution to the clumping of matter, a property that makes the scheme ideal for...
January 28, 2018
We present a novel Lyman alpha (Ly$\alpha$) radiative transfer code, SEURAT, where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emer...
May 11, 2005
We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid ...
March 10, 2003
We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both co...