October 2, 2006
Context: Sticking of colliding dust particles through van der Waals forces is the first stage in the grain growth process in protoplanetary disks, eventually leading to the formation of comets, asteroids and planets. A key aspect of the collisional evolution is the coupling between dust and gas motions, which depends on the internal structure (porosity) of aggregates. Aims: To quantify the importance of the internal structure on the collisional evolution of particles, and to create a new coagulation model to investigate the difference between porous and compact coagulation in the context of a turbulent protoplanetary disk. Methods: We have developed simple prescriptions for the collisional evolution of porosity of grain-aggregates in grain-grain collisions. Three regimes can then be distinguished: `hit-and-stick' at low velocities, with an increase in porosity; compaction at intermediate velocities, with a decrease of porosity; and fragmentation at high velocities. (..) Results: (..) We can discern three different stages in the particle growth process (..) We find that when compared to standard, compact models of coagulation, porous growth delays the onset of settling, because the surface area-to-mass ratio is higher, a consequence of the build-up of porosity during the initial stages. As a result, particles grow orders of magnitudes larger in mass before they rain-out to the mid-plane. Depending on the turbulent viscosity and on the position in the nebula, aggregates can grow to (porous) sizes of ~ 10 cm in a few thousand years. We also find that collisional energies are higher than in the limited PCA/CCA fractal models, thereby allowing aggregates to restructure. It is concluded that the microphysics of collisions plays a key role in the growth process.
Similar papers 1
February 28, 2006
We discuss the results of laboratory measurements and theoretical models concerning the aggregation of dust in protoplanetary disks, as the initial step toward planet formation. Small particles easily stick when they collide and form aggregates with an open, often fractal structure, depending on the growth process. Larger particles are still expected to grow at collision velocities of about 1m/s. Experiments also show that, after an intermezzo of destructive velocities, high ...
August 5, 2011
Aggregation of dust through sticking collisions is the first step of planet formation. Basic physical properties of the evolving dust aggregates strongly depend on the porosity of the aggregates, e.g. mechanical strength, thermal conductivity, gas-grain coupling time. Also the outcome of further collisions depends on the porosity of the colliding aggregates. In laboratory experiments we study the growth of large aggregates of $\sim$ 3 mm to 3 cm through continuous impacts of ...
November 17, 2021
In dead zones of protoplanetary discs, it is assumed that micrometre-sized particles grow Brownian, sediment to the midplane and drift radially inward. When collisional compaction sets in, the growing aggregates collect slower and therefore dynamically smaller particles. This sedimentation and growth phase of highly porous ice and dust aggregates is simulated with laboratory experiments in which we obtained mm- to cm-sized ice aggregates with a porosity of 90\% as well as cm-...
August 4, 2010
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modelled. In this article, the emergent collision model for protoplanetery dust aggregates (G\"uttler et al. 2010) as well as the numerical model for the evolution of dust aggregates in protoplanetary disks (Zsom et al. 2010) are reviewed. It turns out t...
November 1, 2016
Dust coagulation in interstellar space and protoplanetary disks is usually treated as one of 2 extreme cases: Particle-Cluster Aggregation and Cluster-Cluster Aggregation. In this paper we study the process of hierarchical growth, where aggregates are built from significantly smaller aggregates (but not monomers). We show that this process can be understood as a modified, PCA-like process that produces porous, but non-fractal particles whose filling factor is chiefly determin...
April 23, 2012
Rapid orbital drift of macroscopic dust particles is one of the major obstacles against planetesimal formation in protoplanetary disks. We reexamine this problem by considering porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust e...
January 4, 2010
The sticking of micron sized dust particles due to surface forces in circumstellar disks is the first stage in the production of asteroids and planets. The key ingredients that drive this process are the relative velocity between the dust particles in this environment and the complex physics of dust aggregate collisions. Here we present the results of a collision model, which is based on laboratory experiments of these aggregates. We investigate the maximum aggregate size and...
October 22, 2009
The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far so that a physical model of the dust evolution in protoplanetary disks is still missing. We intend to map the parameter space for the co...
November 2, 2009
Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution...
February 8, 2020
One of the main problems in planet formation, hampering the growth of small dust to planetesimals, is the so-called radial-drift barrier. Pebbles of cm to dm sizes are thought to drift radially across protoplanetary discs faster than they can grow to larger sizes, and thus to be lost to the star. To overcome this barrier, drift has to be slowed down or stopped, or growth needs to be sped up. In this paper, we investigate the role of porosity on both drift and growth. We have ...