December 20, 2006
Similar papers 2
January 3, 2013
If double neutron star mergers leave behind a massive magnetar rather than a black hole, a bright early afterglow can follow the gravitational wave burst (GWB) even if there is no short gamma-ray burst (SGRB) - GWB association or there is an association but the SGRB does not beam towards earth. Besides directly dissipating the proto-magnetar wind as suggested by Zhang, we here suggest that the magnetar wind could push the ejecta launched during the merger process, and under c...
February 16, 2016
Short Gamma-Ray Bursts (GRBs) are explosions of cosmic origin believed to be associated with the merger of two compact objects, either two neutron stars, or a neutron star and a black hole. The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger black hole powers the burst. The recent tentative detection by the Fermi satellite ...
September 22, 2020
The joint observation of GW170817 and GRB170817A proved that binary neutron star (BNS) mergers are progenitors of short Gamma-ray Bursts (SGRB): this established a direct link between the still unsettled SGRB central engine and the outcome of BNS mergers, whose nature depends on the equation of state (EOS) and on the masses of the NSs. We propose a novel method to probe the central engine of SGRBs based on this link. We produce an extended catalog of BNS mergers by combining ...
December 7, 2007
Evidence is growing for a class of gamma-ray bursts (GRBs) characterized by an initial ~0.1-1 s spike of hard radiation followed, after a ~3-10 s lull in emission, by a softer period of extended emission lasting ~10-100 s. In a few well-studied cases, these ``short GRBs with extended emission'' show no evidence for a bright associated supernova (SN). We propose that these events are produced by the formation and early evolution of a highly magnetized, rapidly rotating neutron...
August 5, 2009
The strong dependence of the neutrino annihilation mechanism on the mass accretion rate makes it difficult to explain the LGRBs with duration in excess of 100 seconds as well as the precursors separated from the main gamma-ray pulse by few hundreds of seconds. Even more difficult is to explain the Swift observations of the shallow decay phase and X-ray flares, if they indeed indicate activity of the central engine for as long as 10,000 seconds. These data suggest that some ot...
June 9, 2016
Short duration Gamma-Ray Bursts are thought to originate from the coalescence of neutron stars in binary systems. They are detected as a brief ($<$ 2s), intense flash of gamma-ray radiation followed by a weaker, rapidly decreasing afterglow. They are expected to be detected by Advanced LIGO and Virgo when their sensitivity will be low enough. In a recent study we identified a population of short Gamma-Ray Bursts that are intrinsically faint and nearby. Here we provide evidenc...
April 28, 2023
Gamma-ray bursts (GRBs), both long and short, are explosive events whose inner engine is generally expected to be a black hole or a highly magnetic neutron star (magnetar) accreting high density matter. Recognizing the nature of GRB central engines, and in particular the formation of neutron stars (NSs), is of high astrophysical significance. A possible signature of NSs in GRBs is the presence of a plateau in the early X-ray afterglow. Here we carefully select a subset of lon...
May 20, 2009
We consider the possible existence of a common channel of evolution of binary systems, which results in a gamma-ray burst during the formation of a black hole or the birth of a magnetar during the formation of a neutron star. We assume that the rapid rotation of the core of a collapsing star can be explained by tidal synchronization in a very close binary. The calculated rate of formation of rapidly rotating neutron stars is qualitatively consistent with estimates of the form...
July 14, 2009
The existence of a shallow decay phase in the early X-ray afterglows of gamma-ray bursts is a common feature. Here we investigate the possibility that this is connected to the formation of a highly magnetized millisecond pulsar, pumping energy into the fireball on timescales longer than the prompt emission. In this scenario the nascent neutron star could undergo a secular bar-mode instability, leading to gravitational wave losses which would affect the neutron star spin-down....
January 16, 2006
Recent progress on the nature of short duration gamma-ray bursts has shown that a fraction of them originate in the local universe. These systems may well be the result of giant flares from soft gamma-repeaters (highly magnetized neutron stars commonly known as magnetars). However, if these neutron stars are formed via the core collapse of massive stars then it would be expected that the bursts should originate from predominantly young stellar populations, while correlating t...