December 13, 2018
The histories of core-collapse supernova theory and of neutrino physics have paralleled one another for more than seventy years. Almost every development in neutrino physics necessitated modifications in supernova models. What has emerged is a complex and rich dynamical scenario for stellar death that is being progressively better tested by increasingly sophisiticated computer simulations. Though there is still much to learn about the agency and details of supernova explosion...
March 4, 2015
We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.
February 8, 2010
We discuss the science motivations and prospects for a joint analysis of gravitational-wave (GW) and low-energy neutrino data to search for prompt signals from nearby supernovae (SNe). Both gravitational-wave and low-energy neutrinos are expected to be produced in the innermost region of a core-collapse supernova, and a search for coincident signals would probe the processes which power a supernova explosion. It is estimated that the current generation of neutrino and gravita...
July 20, 2022
Neutrinos are the second most ubiquitous Standard Model particles in the universe. On the other hand, they are also the ones least likely to interact. Connecting these two points suggests that when a neutrino is detected, it can divulge unique pieces of information about its source. Among the known neutrino sources, core-collapse supernovae in the universe are the most abundant for MeV-energies. On average, a single collapse happens every second in the observable universe and...
May 18, 2008
Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy...
September 17, 2008
We point out possible features of neutrino spectra from a future galactic core collapse supernova that will enhance our understanding of neutrino mixing as well as supernova astrophysics. We describe the neutrino flavor conversions inside the star, emphasizing the role of "collective effects" that has been appreciated and understood only very recently. These collective effects change the traditional predictions of flavor conversion substantially, and enable the identification...
November 10, 2023
Core-collapse supernovae (CCSNe) offer extremely valuable insights into the dynamics of galaxies. Neutrino time profiles from CCSNe, in particular, could reveal unique details about collapsing stars and particle behavior in dense environments. However, CCSNe in our galaxy and the Large Magellanic Cloud are rare and only one supernova neutrino observation has been made so far. To maximize the information obtained from the next Galactic CCSN, it is essential to combine analyses...
July 9, 1993
We have simulated the response of a high energy neutrino telescope to the stream of low energy neutrinos produced by a supernova. The nominal threshold of such detectors is in the GeV energy range. The passage of a large flux of MeV neutrinos during a period of seconds will nevertheless be detected as an excess of single counting rates in all individual optical modules. Detectors under construction, which consist of roughly 200 modules, will be able to detect a galactic super...
April 18, 2022
Growing evidence from multi-wavelength observations of extragalactic supernovae (SNe) has established the presence of dense circumstellar material in Type II SNe. Interaction between the SN ejecta and the circumstellar material should lead to diffusive shock acceleration of cosmic rays and associated high-energy emission. Observation of high-energy neutrinos along with the MeV neutrinos from SNe will provide unprecedented opportunities to understand unanswered questions in co...
November 9, 2011
These conference proceedings cover various aspects of neutrino propagation through the high matter and neutrino densities near the proto-neutron star in a core-collapse supernova. A significant feature of this regime is the impact of neutrino-neutrino interactions. Properties of this non-linear many-neutrino system are discussed with a particular emphasis on its symmetries.