January 22, 2007
A high accuracy photometric reduction method is needed to take full advantage of the potential of the transit method for the detection and characterization of exoplanets, especially in deep crowded fields. In this context, we present DECPHOT, a new deconvolution-based photometry algorithm able to deal with a very high level of crowding and large variations of seeing. It also increases the resolution of astronomical images, an important advantage for the discrimination of false positives in transit photometry.
Similar papers 1
June 18, 2009
Among the group of extrasolar planets, transiting planets provide a great opportunity to obtain direct measurements for the basic physical properties, such as mass and radius of these objects. These planets are therefore highly important in the understanding of the evolution and formation of planetary systems: from the observations of photometric transits, the interior structure of the planet and atmospheric properties can also be constrained. The most efficient way to search...
June 16, 2006
A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large scale variations of the spatial resolution from one image to another. A recent deconvolution-based p...
March 7, 2009
Compared to bright star searches, surveys for transiting planets against fainter (V=12-18) stars have the advantage of much higher sky densities of dwarf star primaries, which afford easier detection of small transiting bodies. Furthermore, deep searches are capable of probing a wider range of stellar environments. On the other hand, for a given spatial resolution and transit depth, deep searches are more prone to confusion from blended eclipsing binaries. We present a powerf...
February 6, 2007
We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.
December 19, 2006
Many ground-based photometric surveys are now under way, and five of them have been successful at detecting transiting exoplanets. Nevertheless, detecting transiting planets has turned out to be much more challenging than initially anticipated. Transit surveys have learnt that an overwhelming number of false positives and confusion scenarios, combined with an intermittent phase coverage and systematic residuals in the photometry, could make ground-based surveys rather ineffic...
June 30, 2009
This paper reviews the basic technical characteristics of the ground-based photometric searches for transiting planets, and discusses a possible observational selection effect. I suggest that additional photometric observations of the already observed fields might discover new transiting planets with periods around 4-6 days. The set of known transiting planets support the intriguing correlation between the planetary mass and the orbital period suggested already in 2005.
November 23, 2016
We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional "differential photometry" technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducte...
September 14, 2009
We demonstrate the newly developed resource for exoplanet researchers - The Exoplanet Transit Database. This database is designed to be a web application and it is open for any exoplanet observer. It came on-line in September 2008. The ETD consists of three individual sections. One serves for predictions of the transits, the second one for processing and uploading new data from the observers. We use a simple analytical model of the transit to calculate the central time of tra...
March 26, 2019
This paper is to introduce an online tool for the prediction of exoplanet transit light curves. Small telescopes can readily capture exoplanet transits under good weather conditions when the combination of a bright star and a large transiting exoplanet results in a significant depth of transit. However, in reality there are many considerations that need to be made in order to obtain useful measurements. This paper and accompanying website layout a procedure based on time seri...
August 26, 2019
We present here the first release of the open-source python package ExoTETHyS, which aims to provide a stand-alone set of tools for modeling spectro-photometric observations of the transiting exoplanets. In particular, we describe: (1) a new calculator of stellar limb-darkening coefficients that outperforms the existing software by one order of magnitude in terms of light-curve model accuracy, i.e., down to <10 parts per million (ppm); (2) an exact transit light-curve generat...